Cryogenic Sapphire Oscillator - 'The Sapphire Clock'

Timing precision is critical in many sensing, communication and computational tasks.听The call for very high timing precision reaches its pinnacle in radar technology, very long baseline (VLBI) radio astronomy and quantum computing to choose three examples.

IPAS researchers have developed a Cryogenic Sapphire Oscillator, or Sapphire Clock, that produces an extremely pure signal at a microwave frequency of about 10 GHz and allows time measurements with accuracy on the femtosecond scale; performing 10 to 1000 times better than any competing technology.

Such a performance gain allows users to take ultra-high precision measurements to improve the performance of electronic systems.

  • The technology

    The Cryogenic Sapphire Oscillator has a 5 cm cylinder-shaped sapphire crystal that is cooled to about -267 掳C, or about 5 or 6 degrees above absolute zero. At this temperature, the microwave energy lost in the sapphire crystal is the lowest of any substance on Earth. Microwave radiation is injected into the sapphire crystal and propagates around the circumference of the crystal (just inside the surface). The way the microwave radiation moves around the crystal is called a 鈥淲hispering Gallery鈥. Lord Rayleigh first discovered this concept in 1878 when he could hear someone whispering far away on the other side of the church dome at St Paul鈥檚 Cathedral.

    There is one particular frequency that will excite the natural resonance of the sapphire crystal 鈥 this corresponds to the signal that reinforces itself after one round trip around the crystal surface. A good analogy might be to imagine hitting a bell and using its regular oscillations to count time.听 The losses in sapphire are so low that if it were a conventional bell then it would keep ringing for millions of years. However, in the sapphire crystal the resonant frequency is so high鈥10 billion cycles per second鈥攖hat the electromagnetic signal rings only for a hundred milliseconds.

    The Sapphire Clock has a short-term fractional frequency stability of around 1x10-15, which is equivalent to only losing or gaining one second every 40 million years. Its long-term frequency performance is also exceptional (about 10-15 after one day of averaging). We also see some exponentially decreasing aging of the output frequency due to mechanical relaxation of the sapphire crystal after 1 month of operation its fractional frequency drift becomes less than 1x10-14/day.

  • Defence applications

    The culmination of 20 years of leading-edge fundamental research, combined with cutting-edge engineering, has led to a disruptive technology that is now revolutionizing a vital Australian defence asset. The Sapphire Clock offers a 1000-fold improvement in timing precision, which delivers an improved capability for Australian Defence to identify threats to Australia using the Jindalee Over-The-Horizon Radar Network.

    Radar works by broadcasting highly complex radio or microwave signals from a transmitter. If these emitted signals intercept an object then part of the signal may be reflected back to a receiver antenna. These reflected signals contain information on the location, speed and size of the object. However, the performance of the radar is critically dependent on the purity and quality of the signals that are broadcast: if one can broadcast noiseless signals then will be possible to detect smaller objects that are further away and which are moving slower. This additional surveillance power is critically important in a defence context by providing additional insight.

    To answer this call for better radar signals the Sapphire Clock team commenced working closely with the High-frequency Radar team at DST Group who are responsible for the research behind the JORN project. The Sapphire Clock is the culmination of 20 years of leading-edge fundamental research which has shown world-beating performance in the lab. The clock is so good its performance is the equivalent of only losing or gaining one second every 40 million years. When applied to the JORN radar application it delivers a signal that is more than 1000 times purer than its existing approach. It is important to note that this improvement can still be delivered despite the existing JORN solution making use of the best commercial devices that money can buy.

    Frequency synthesis and dissemination over optical fibre

    In addition to the remarkable Sapphire Clock, the team has developed two additional technologies that directly result in purer signals for JORN, and which thus assist Australian defence to be better able to observe threats to Australia. Firstly, the team has developed ultra-low noise synthesis technology that can take the clock signals and generate the frequencies that are needed by the radar: it can do this while preserving the signal purity of the clock. Secondly, the team has developed signal dissemination technology, which enables them to deliver the pure signals through optical fibre to the numerous locations necessary to broadcast the JORN signals effectively. The range of technologies developed by the team provides the revolutionary leap in the performance in this outstanding Australian invention.

  • Publications

    • W. A. Al-Ashwal, A. Hilton,听A. N. Luiten, J. G. Hartnett,听,听IEEE Microwave and Wireless Components Letters听27, 392-394 (2017).
    • M. S. Heo, S. E. Park, W. K. Lee, S. B. Lee, H. G. Hong, T. Y. Kwon, C. Y. Park, D. H. Yu, G. Santarelli, A. P. Hilton,听A. N. Luiten, J. G. Hartnett,听, IEEE Transactions on Instrumentation and Measurement, 99, 1-6 (2016).
    • J. G. Hartnett, M. E. Tobar, E. N. Ivanov,听A. N. Luiten,听. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 60, 1041-1047 (2013).
    • J.G. Hartnett, N.R. Nand and C. Lu,听, Appl. Phys. Lett.,听100, 183501, (2012).
    • J.G. Hartnett听and听A.N. Luiten,听, Rev. Mod. Phys. 83, 1-9 (2011).
    • M. E. Tobar, E. N. Ivanov, C. R. Locke, P. L. Stanwix, J. G. Hartnett,听A. N. Luiten, R. B. Warrington, P. T. H. Fisk, M. A. Lawn, M. J. Wouters, S. Bize, G. Santarelli, P. Wolf, A. Clairon, P. Guillemot,听.听IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control听53, 2386-2391 (2006).
    • S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti, J. Gr眉nert, C. Vian, F. Pereira dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli, P. Wolf, A. Clairon, A. Luiten, M. Tobar, C. Salomon,听. Comptes Rendus Physique 5, 829-846 (2004).
    • P. Wolf, S. Bize, A. Clairon, A. N. Luiten, G. Santarelli, M. E. Tobar,听. Physical Review Letters 90, 060402/060401-060402/060404 (2003).
    • J. G. Hartnett, A. N. Luiten, J. Krupka, M. E. Tobar, P. Bilski,听. Journal of Physics D: Applied Physics 35, 1459-1466 (2002).
    • A. G. Mann, C. Sheng, A. N. Luiten,听. IEEE Transactions on Instrumentation and Measurement 50, 519-521 (2001).
    • Y. Sortais, S. Bize, M. Abgrall, S. Zhang, C. Nicolas, C. Mandache, P. Lemonde, P. Laurent, G. Santarelli, N. Dimarcq, P. Petit, A. Clairon, A. Mann, A. Luiten, S. Chang, and C. Salomon,听. Physica-Scripta T95, 50-57 (2001).
    • S. Chang, A. G. Mann, A. N. Luiten,听. Electronics Letters 36, 480-481 (2000).
    • G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, C. Salomon,听. Physical Review Letters 82, 4619-4622 (1999).
    • A. N. Luiten, M. E. Tobar, J. Krupka, R. Woode, E. N. Ivanov, A. G. Mann,听. Journal of Physics D: Applied Physics 31, 1383-1391 (1998).
    • S. Chang, A. G. Mann, A. N. Luiten, D. G. Blair,听. Physical Review Letters 79, 2141-2144 (1997).
    • A. N. Luiten, A. G. Mann, D. G. Blair,听. Measurement Science and Technology 7, 949-953 (1996).
    • A. N. Luiten, A. G. Mann, D. G. Blair,听Journal of Physics D: Applied Physics 29, 2082-2090 (1996).
    • J. Krupka, D. Cros, A. Luiten, M. Tobar,听. Electronics Letters 32, 670-671 (1996).
    • A. N. Luiten, A. G. Mann, M. E. Costa, D. G. Blair,听. IEEE Transactions on Instrumentation and Measurement, 44 (2), 132-135 (1995).
    • A. N. Luiten, A. G. Mann, D. G. Blair,听. Electronics Letters 30, 417-419 (1994).
    • M. E. Costa, A. N. Luiten, M. E. Tobar, D. G. Blair,听. Electronics Letters 30, 149-151 (1994).
    • M. E. Costa, J. W. He, A. S. Mann, A. N. Luiten, D. G. Blair,听. Electronics Letters 30, 2119-2120 (1994).
    • A. N. Luiten, A. G. Mann, A. J. Giles, D. G. Blair,听. IEEE Transactions on Instrumentation and Measurement 42, 439-443 (1993).
    • A. N. Luiten, A. G. Mann, D. G. Blair,听. Electronics Letters 29, 879-881 (1993).
    • M. E. Costa, D. G. Blair, M. J. Buckingham, A. J. Giles, S. K. Jones, A. N. Luiten, P. J. Turner, A. C. Young, P. Hong, A. G. Mann,听. Measurement Science and Technology 3, 718-722 (1992).
    • D. L. Jauncey, J. E. Reynolds, A. K. Tzioumis, T. W. B. Muxlow, R. A. Perley, D. W. Murphy, R. A. Preston, E. A. King, A. R. Patnaik, D. L. Jones, D. L. Meier, D. J. Bird, D. G. Blair, J. D. Bunton, R. W. Clay, M. E. Costa, R. A. Duncan, R. H. Ferris, R. G. Gough, P. A. Hamilton, D. W. Hoard, A. Kemball, M. J. Kesteven, E. T. Lobdell, A. N. Luiten, P. M. McCulloch, J. D. Murray, G. D. Nicolson, A. P. Rao, A. Savage, M. W. Sinclair, L. Skjerve, L. Taaffe, R. M. Wark, G. L. White,听. Nature 352, 132-134 (1991).

Videos

Defence applications

Interview with ABCNEWS

ABC News - Light Years Ahead

2018 Eureka Prize