Silicon chip propels 6G communications forward

Multiplexer

Operation schematic of the proposed all-silicon terahertz integrated polarization (de)multiplexer.聽Image: Dr Weijie Gao / Osaka University

A team of scientists has unlocked the potential of 6G communications with a new polarisation multiplexer.

Terahertz communications represent the next frontier in wireless technology, promising data transmission rates far exceeding current systems.

By operating at terahertz frequencies, these systems can support unprecedented bandwidth, enabling ultra-fast wireless communication and data transfer. However, one of the significant challenges in terahertz communications is effectively managing and utilising the available spectrum.

The team has developed the first ultra-wideband integrated terahertz polarisation (de)multiplexer implemented on a substrateless silicon base which they have successfully tested in the sub-terahertz J-band (220-330 GHz) for 6G communications and beyond.

The 成人大片鈥檚 Professor Withawat Withayachumnankul from the School of Electrical and Mechanical Engineering led the team which also includes former PhD student at the 成人大片, Dr Weijie Gao, who is now a postdoctoral researcher working alongside Professor Masayuki Fujita at Osaka University.

鈥淥ur proposed polarisation multiplexer will allow multiple data streams to be transmitted simultaneously over the same frequency band, effectively doubling the data capacity,鈥 said Professor Withayachumnankul.

鈥淭his large relative bandwidth is a record for any integrated multiplexers found in any frequency range. If it were to be scaled to the centre frequency of the optical communications bands, such a bandwidth could cover all the optical communications bands.鈥

A multiplexer聽makes it possible for several input signals to share one device or resource 鈥 such as the data of several phone calls being carried on a single wire.

The new device that the team has developed can double the communication capacity under the same bandwidth with lower data loss than existing devices. It is made using standard fabrication processes enabling cost-effective large-scale production.

鈥淭his innovation not only enhances the efficiency of terahertz communication systems but also paves the way for more robust and reliable high-speed wireless networks,鈥 said Dr Gao.

鈥淎s a result, the polarisation multiplexer is a key enabler in realising the full potential of terahertz communications, driving forward advancements in various fields such as high-definition video streaming, augmented reality, and next-generation mobile networks such as 6G.鈥

鈥淥ur proposed polarisation multiplexer will allow multiple data streams to be transmitted simultaneously over the same frequency band, effectively doubling the data capacity.鈥 Professor Withayachumnankul.

The groundbreaking challenges addressed in the team鈥檚 work, which they have published in the journal significantly advance the practicality of photonics-enabled terahertz technologies.

鈥淏y overcoming key technical barriers, this innovation is poised to catalyse a surge of interest and research activity in the field,鈥 said Professor Fujita who is a co-author of the paper.

鈥淲e anticipate that within the next one to two years, researchers will begin to explore new applications and refine the technology.鈥

Over the following three-to-five years, the team expects to see significant advancements in high-speed communications, leading to commercial prototypes and early-stage products.

鈥淲ithin a decade, we foresee widespread adoption and integration of these terahertz technologies across various industries, revolutionising fields such as telecommunications, imaging, radar, and the internet of things,鈥 said Professor Withayachumnankul.

This latest polarisation multiplexer can be seamlessly integrated with the on the same platform to achieve advanced communications functions.

Tagged in featured story, communications, 6G