Maths Learning Service: Revision

Mathematics IA

Complex Numbers

The *imaginary number* $i = \sqrt{-1}$ is an extension to the real number system which allows us to solve equations such as

$$x^2 = -1$$
.

A complex number is any number of the form z = a + bi, where a and b are real numbers.

Note: All numbers involving *i* can be written in this form.

Examples: (a)
$$i^{2} + i^{3}$$
 (b) $\frac{2i - 3}{i + 1}$

$$= -1 + i^{2}i \qquad = \frac{2i - 3}{i + 1} \times \frac{i - 1}{i - 1}$$

$$= -1 - i \qquad = \frac{2i^{2} - 5i + 3}{i^{2} - 1}$$

$$= \frac{-2 - 5i + 3}{-1 - 1}$$

$$= \frac{1 - 5i}{-2} = -\frac{1}{2} + \frac{5}{2}i$$

Notes: (1) In z = a + bi, a is the real part of z. b is the imaginary part of z.

> (2) If b = 0, z is a real number. If a = 0, z is a purely imaginary number.

z = a - bi is the *complex conjugate* of z = a + bi. The solutions to quadratic equations are complex conjugates.

Example: Solve $x^2 - 2x + 10 = 0$.

Solution: Using the quadratic formula with a = 1, b = -2 and c = 10,

$$X = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times 1 \times 10}}{2 \times 1}$$

$$= \frac{2 \pm \sqrt{-36}}{2}$$

$$= \frac{2 \pm \sqrt{36 \times -1}}{2}$$

$$= \frac{2 \pm 6i}{2}$$

$$= 1 - 3i \text{ or } 1 + 3i.$$

Exercises

- Rewrite the following in the form a + bi:
 - (a) (2i+6)+(5i-1) (b) (3i+2)(i-1)

- (c) $\frac{i}{1+2i}$ (d) $\frac{1}{2-i} + \frac{2}{2+i}$
- (2) If $z_1 = 1 2i$ and $z_2 = 2 + i$, find:
 - (a) $Z_1 + Z_2$

(b) $\overline{Z_1 + Z_2}$

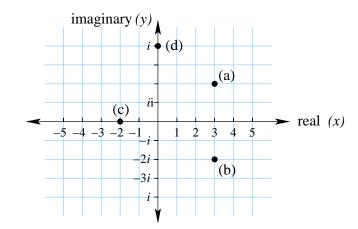
- (3) Solve for x:
 - (a) $x^2 10x + 29 = 0$ (b) $\frac{1}{x} = 1 2x$

The Complex (Argand) Plane

The complex number z = a + bi can be represented on a number plane (rather than a number line) with co-ordinates (a, b). The x-axis represents the real component of z and the y-axis represents the imaginary component.

Examples: (a) 3 + 2*i*

- (b) 3-2i (c) -2 (d) 4i



The distance of a complex number from the origin of the Argand Plane is called the *modulus* of the complex number z (or |z|). By Pythagoras' Theorem:

$$|Z| = \sqrt{\partial^2 + b^2}.$$

Examples: (a) |3 + 2i| (b) |3 - 2i| (c) |-2| (d) |4i|

(a)
$$|3 + 2i|$$

(b)
$$|3-2i|$$

(c)
$$|-2|$$

$$=\sqrt{3^2+2^2}$$

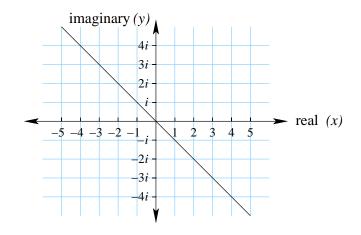
$$=\sqrt{3^2+(-2)^2}$$

$$= \sqrt{3^2 + 2^2} \qquad = \sqrt{3^2 + (-2)^2} \qquad = \sqrt{(-2)^2 + 0} \qquad = \sqrt{0 + 4^2}$$

$$= \sqrt{0 + 4^2}$$

$$=\sqrt{13}$$
 $=\sqrt{13}$ $=2$

$$=\sqrt{13}$$



(The reader is left to investigate why this solution works geometrically.)

Exercises

- (4) Find:
 - (a) |1 + i|
- (b) |1 i|
- (c) |-6i|
- (5) Find all complex numbers z = x + iy which satisfy:

 - (a) |z + 1| = 1 (b) |z| = |z + 1|

Answers to Exercises

(1) (a) 5 + 7i

(b) -5 - i

(c) $\frac{2}{5} + \frac{1}{5}i$

(d) $\frac{6}{5} - \frac{1}{5}i$

(2) (a) 3 + i

(b) 3 + i

(This example demonstrates the property that $\overline{Z_1} + \overline{Z_2} = \overline{Z_1 + Z_2}$.)

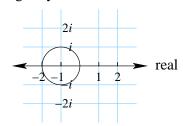
- (3) (a) 5-2i or 5+2i
- (b) $\frac{1}{4} \frac{\sqrt{7}}{4}i$ or $\frac{1}{4} + \frac{\sqrt{7}}{4}i$
- (4) (a) $\sqrt{2}$

- (b) $\sqrt{2}$
- (c) 6

(5) (a) $(x+1)^2 + y^2 = 1$

(A circle of radius 1 centred on (-1,0)) (b) $X = -\frac{1}{2}$ (A vertical line)

imaginary



imaginary (y)

