Baby oysters follow the crackling sound of snapping shrimp

Though oysters may be brainless bivalves, they can 鈥渉ear鈥 and swim towards attractive sounds of the sea.


We played the crackling sound of snapping shrimp, which indicates a healthy reef, to baby oysters using underwater speakers. We discovered the oysters swim towards the sound.听 This opens the possibility of playing marine sounds to attract oysters to reef restoration projects, accelerating their recovery.

Submarines and shrimp


This story of using the sounds of the sea begins in World War II, when US submarines detected a mysterious crackling sound over the sonar.听 At first, it was feared to be jamming by the enemy. Other guesses were the crackling was created by shipworms (a type of mollusc), clams clapping, or pebbles rolling on the sea floor. But the true culprit? Snapping shrimp.

Snapping shrimp use their large snapping claws to rapidly shoot out a jet of water to stun prey. This snap is so rapid it creates a flash of light nearly as hot as the Sun (shrimpoluminescence) and generates a loud snapping sound that can exceed 210 decibels 鈥 louder than a rock concert!听 When snapping shrimp aggregate, as they do on healthy reefs, their intense snapping sounds like bacon crackling on a frying pan.听 Once the source of the sound was understood, Allied submarines even used the crackling chorus of healthy reefs to acoustically mask their location from the enemy. Today, many snorkellers and divers will be familiar with this crackle.

Swimming oysters


Baby oysters have no ears, but we found they can still detect snapping shrimp crackle and swim towards it. They swim using fine hairs called cilia that act as paddles, allowing them to move not only up and down in the water column, but also from side to side.听 This discovery tells us baby oysters have more control over where they go in the ocean than was previously thought.

To conduct our research, we built affordable underwater speakers with engineers at the non-profit environmental organisation听听to broadcast the snapping shrimp crackle in the ocean. When we used these speakers in places with little background noise, we attracted high numbers of baby oysters.听 By contrast, places with high levels of human-made background noise, such as from outboard motors and shipping, made our speaker sounds harder to hear, resulting in fewer baby oysters being attracted.

Sound and animals


Just as music can听reduce depression and increase the mood听of humans, playing sound can change the behaviour of a听diversity of animals. For example,听ibises have more sex听when their vocalisations are played to them.听 Marine animals have broad vocal repertoires.听Fish听honk, drum and pop;听whales听whistle and moan; and听seals听groan, grunt and growl.

These sounds, combined with those of waves, wind and rain, create the marine soundscape. A soundscape filled with snapping shrimp crackle indicates to marine animals a healthy place to live, with plenty of food and habitat.听 More than visual and chemical cues, sound is a useful sensory cue for marine animals in their day-to-day lives, because it travels a long way underwater. Sound can be heard by animals from afar and act as a beacon for them to follow.

Ocean music and conservation


The sounds produced by marine animals, such as the snapping shrimp, are听fading听due to habitat loss and climate change. At the same time,听human-made ocean noise听is on the rise, from activities such as shipping, sonar and offshore pile-driving.听 This means animals such as the baby oyster are becoming听lost at sea, not knowing where to find healthy habitats to settle and live in.听 Using acoustic technology to broadcast ocean music in the form of snapping shrimp crackle presents an opportunity to lead animals along highways of sound, all the way to coasts where we are trying to restore healthy habitats.听 Sound technology offers a relatively inexpensive way to help speed up the recovery of oyster reef habitats. This would allow us to sooner experience the听benefits provided by reefs.

The perfect playlist?


We still have much to learn about marine sound and how human activities pollute the marine soundscape.听 The future of ocean restoration could be full of rhythms and melodies engineered to attract animals. Who knows what we will find on the playlist of the best sounds for habitat restoration?听 Perhaps Mozart and Taylor Swift will make the cut.

Original article featured in听听with Brittany Williams, Dr听 and Professor听听肠辞苍迟谤颈产耻迟颈苍驳.
Tagged in Environment Institute, Faculty of Sciences Engineering and Technology, Oyster Reef Restoration, Research Wins, School of Biological Sciences
Facebook and twitter

Newsletter & social media

Join us for a sensational mix of news, events and research at the Environment Institute. Find out about听new initiatives and听share with your friends what's happening.

听听听