成人大片

ECON 1013 - Using Big Data for Economic and Social Problems I

North Terrace Campus - Semester 2 - 2021

This course will show how "big data" can be used to understand and solve some of the most important social and economic problems of our time. The course will give students an introduction to important relevant economic concepts and frontier research in applied economics and social science related to policy making. Topics may include equality of opportunity, discrimination, education, health care, and climate change besides others. The course will also provide an introduction to basic statistical methods and data analysis techniques relevant for big data approaches, which may include regression analysis, causal inference, and quasi-experimental methods.

  • General Course Information
    Course Details
    Course Code ECON 1013
    Course Using Big Data for Economic and Social Problems I
    Coordinating Unit Economics
    Term Semester 2
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact up to 3 hours per week
    Available for Study Abroad and Exchange Y
    Assessment Typically, active participation, group project, mid-term exam and final exam
    Course Staff

    Course Coordinator: Dr Florian Ploeckl

    Course Timetable

    The full timetable of all activities for this course can be accessed from .

  • Learning Outcomes
    Course Learning Outcomes
    On successful completion of this course, students will be able to:

    1. Recognize suitable economic models and concepts to address major contemporary economic and social issues.

    2. Explain the relevance of causality in addressing policy questions.

    3. Identify suitable and appropriate empirical and statistical analysis approaches.

    4. Interpret and explain the application and outcomes of big data statistical techniques.

    5. Analyze, visualize, and communicate economic and social data individually and in group settings.

    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    1,3
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    2,3,4,5
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    2,4,5
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    3,4,5
    Intercultural and ethical competency
    • adept at operating in other cultures
    • comfortable with different nationalities and social contexts
    • able to determine and contribute to desirable social outcomes
    • demonstrated by study abroad or with an understanding of indigenous knowledges
    1,2,5
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
    2,4,5
  • Learning Resources
    Recommended Resources
    This course makes use of the materials of the “Big Data Course” by Opportunity Insight, available at:


  • Learning & Teaching Activities
    Learning & Teaching Modes
    The course uses a blended teaching approach.

    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    On average beyond attending seminar and tutorials, students are expected to spend about 9 hours per week for reading, practicing, watching online material, preparing projects and studying. The time required may vary across students and topics.
    Learning Activities Summary
    Weekly learning activities consist of seminars, tutorials, and engagement with online materials. Seminars expect prior preparation with online material and utilize active participation components in a blended teaching approach. Tutorials focus on practical data exercises in software-based data analysis and visualization.  This will be done through introducing students to the PowerBI software package.

    The intention is to focus the activity of week 8 on real-world examples through either a guest lecture or case study seminar that illustrates real world aspects of the application. 

    The following table provides a tentative overview about the economic topics and statistical methods covered in the weekly lectures and tutorials.

    The schedule and topic selection are tentative and might be adjusted during the semester
    Week Topic Lecture Topic Statistical Methods
    1-4 Equality of Opportunity Geography of mobility, Neighbourhood effects, Innovation, etc Correlation, Regression, Experiments, etc
    5 Racial Disparities Racial Disparities in Economic opportunities Dynamic Models
    6-7 Education Education and social mobility, Effects of schools and teachers Regression Discontinuity, etc
    8 Application Guest lecture / Case Study / etc
    9-10 Health Economics of Health Care, Improving Health Outcomes Hazard Models, Adverse Selection
    11 Climate Change Impact of pollution, Mitigation policies Difference-in-Difference Externalities, etc
    12 Tax Policy Taxation, Behavioural Economics Supply & Demand
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Task Task Type Due Weighting Learning Outcome
    1 Participation Individual weekly 10% 1-5
    2 Group Projects Group TBC 30% 2,3,4,5
    3 Midterm Individual Weeks 8-9 20% 1,2,3,4
    4 Quizzes Individual weekly 20% 1,3,4
    5 Data Assignment Individual Week 12/13 20% 2,3,4,5
    Assessment Detail
    1) Participation
        a.)   Active Participation is assessed in the weekly seminar through participation inquizzes, polls and surveys.
        b.)    There will be a systematic replacement activity for students that cannot attend the seminar, including students outside of Adelaide.
        c.)    Overall marking will be based on a best 10 out of 12 approach to take into account extenuating circumstances

     
    2) Group Project
        a.)   This is a group assignment where students are tasked to design, create, and explain a written and visual exploration of an empirical, data-oriented economic topic

     
    3) Midterm Exam
        a.) This will be conducted online in the form of a multiple choice quiz
        b.)  A variety of MCQ formats will be used, including multiple answers and standard multiple choice questions.
         c.) It will be a timed quiz with students able to freely choose when to complete it during an extended period of time.

     
    4) Weekly Quizzes
        a.)  Multiple Answer quizzes relating to the topics covered in each week
        b.)  One graded quiz for each week
        c.)   The mark will be based on the best 10 out of 12 quizzes to account for extenuating circumstances
        d.)   Submission of quizzes will be electronically on MyUni

     
    5) Data Assignment
       a.)  This is a written assignment that may include practical data analysis and visualization tasks
       b.)   This is the final assignment of the course. If students are unable to complete it due to extenuating circumstances a case-by-case decision will be made with regard to a replacement through an additional assignment or reweighting of other assessment components.

     
    An overall mark of 50% is needed to gain a pass.

    Legible hand-writing and the quality of English expression are considered to be integral parts of the assessment process, and may affect marks. Marks cannot be awarded for answers that cannot be read or understood.
    Submission
    1) Submission of projects is to be done online through MyUni. Failure to submit an assignment on time will lead to a zero mark unless
    a different arrangement is specifically stated on MyUni.

    2)  Extensions and alternative assessment conditions: It is your responsibility to contact the lecturer in the first 2 weeks of the semester to discuss extension or alternative assessment options. This applies to ALL students, included but not limited to those registered with the disability centre or the elite athletes program. Exceptional circumstances will be evaluated by your lecturer on a case-by-case basis and should be discussed whenever possible at least 48 hours before the due date
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through .

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

    Based on student feedback changes to the seminar structure, integration of online material and linkage between tutorials and other course elements have been made.
  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.

The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.