STATS 4101 - Statistical Modelling - Honours
North Terrace Campus - Semester 1 - 2020
-
General Course Information
Course Details
Course Code STATS 4101 Course Statistical Modelling - Honours Coordinating Unit Mathematical Sciences Term Semester 1 Level Undergraduate Location/s North Terrace Campus Units 3 Contact Up to 3 hours per week Available for Study Abroad and Exchange Prerequisites STATS 2107 or (MATHS 2201 and MATHS 2202) or (MATHS 2106 and MATHS 2107) Assumed Knowledge Experience with the statistical package R such as would be obtained from STATS 1005 or STATS 2107 Restrictions Honours students only Assessment ongoing assessment, exam Course Staff
Course Coordinator: Associate Professor Gary Glonek
Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
1. Explain the mathematical basis of the general linear model and its extensions to multilevel models and logistic regression.
2. Use the open source programming language R for the analysis of data arising from both observational studies and designed experiments.
3. Explain the role of statistical modelling in discovering information, making predictions and decision making in a range of applications including medicine, engineering, science and social science.University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Deep discipline knowledge
- informed and infused by cutting edge research, scaffolded throughout their program of studies
- acquired from personal interaction with research active educators, from year 1
- accredited or validated against national or international standards (for relevant programs)
1,2,3 Critical thinking and problem solving
- steeped in research methods and rigor
- based on empirical evidence and the scientific approach to knowledge development
- demonstrated through appropriate and relevant assessment
1,2,3 Career and leadership readiness
- technology savvy
- professional and, where relevant, fully accredited
- forward thinking and well informed
- tested and validated by work based experiences
2 -
Learning Resources
Required Resources
There is no prescribed text for this course.Recommended Resources
The following references are recommended reading:
1. A. Agresti. Foundations of linear and generalized linear models. Wiley, 2015.
2. A. Dobson and A. Barnett. An introduction to generalised linear models. Third Edition, Chapman & Hall/CRC, 2008.
3. P. McCullagh and J. Nelder. Generalised linear models. Second Edition, Chapman & Hall/CRC, 1989.
4. W. Venables and B. Ripley. Modern Applied Statistics with S. Fourth Edition, Springer, 2002.Online Learning
This course uses MyUni-Canvas for providing course materials and resources, including lecture notes, assignment papers, tutorial and computing worksheets, solutions, project materials and so on. Students should check their email and MyUni announcements for this course regularly for any notices or correspondence from the Course Coordinator and tutors. -
Learning & Teaching Activities
Learning & Teaching Modes
The lecturer guides the students through the course material in 24 lectures. Students are expected to prepare for lectures by reading the printed notes in advance of the lecture, and by engaging with the material in the lectures. Students are expected to attend all lectures, but lectures will be recorded (where appropriate facilities are available) to help with occasional absences and for revision purposes.
In the fortnightly tutorials, students will work on and discuss their solutions in groups, and seek help from the tutors as needed. These exercises will be further supplemented by the fortnightly computing practical sessions during which students will work under guidance on practical data analysis and develop more advanced computing skills using R. A series of three homework assignments and a group project build on the tutorial and practical material, and provides students with the opportunity to gauge their progress and understanding of the course material.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
Activity Quantity Workload Hours Lectures 24 72 Tutorials 6 12 Practicals 5 10 Assignments 3 30 Project 1 32 Total 156 Learning Activities Summary
Week: Topics covered 1. Introduction, matrix notation, multiple regression. The linear regression model. 2. Estimable functions and best linear unbiased estimates. The Gauss-Markov Theorem. Inference for multiple regression. Prediction. Symbolic specification of linear models. 3. Factors and contrasts. The marginality principle. 4. Regression diagnostics; influence diagnostics. Leverage and Cook's distance. 5. Model building: variance reduction in randomised experiments; observational studies and quasi-experiments. The role of predictor variables. 6. Model selection algorithms: forwards, backwards and stepwise selection procedures. Box-Cox transformation and the profile likelihood. 7. Generalised least squares (GLS). The geometry of least squares; orthogonal projections. 8. The geometry of least squares (cont.). Estimation of the residual variance; estimable functions; hypothesis tests; expected mean squares. 9. Orthogonality of hypotheses. Extension to generalised least squares. Multistratum experiments and random effects models. 10. Expected mean squares for the split plot experiment. Least squares estimates for balanced factorial experiments. Averaging operators. 11. Logisitic regression; maximum likelihood estimation; inference for regression coefficient. Hypotheses concerning several parameters. 12. Logisitic regression: common odds rations for several 2x2 tables. Prospective and retrospective studies. Model fit and overdispersion.
Specific Course Requirements
Students completing this course as an Honours course will complete additional work, in particular additional advanced assignment and project work. -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Component Assessment mode Week Due Weighting Learning
outcomesTutorials Formative 2,4,6,8,10,12 5% All Practicals Formative 1,3,7,9,11 5% All Assignments Formative & summative Week set: 1,3,5 4,6,8 10% All Group Project Formative & summative Week set: 7 13 10% All Examination Summative 70% All
Due to the current COVID-19 situation modified arrangements have been made to assessments to facilitate remote learning and teaching. Assessment details provided here reflect recent updates.
To support the changes to teaching, the following revisions to assessment have been made:
Assignments: 20% Four assignments each worth 5%
Online quizzes: 20% Two quizzes each worth 10%
Project: 10% Individual project worth 10%
Online exam: 50%Assessment Related Requirements
An aggregate final mark of at least 50% is required to pass the course.Assessment Detail
Attendance at five out of six tutorials will contribute 5% to the assessment for this course, and attendance at four out of five computing practicals will contribute 5% to the assessment for this course, for a total of 10%. Tutorials will be in the even weeks, commencing in Week 2. Computing practicals will be in the odd weeks, commencing in Week 1. If students are unable to attend classes owing to illness or compassionate reasons, please let the lecturer know.
There are three assignments (1, 2 and 3) that contribute 10% of the assessment. There is also a small group project due in Week 13 that contributes 10% of the assessment.
The final exam contributes 70% towards the final mark for the course.
Submission
All written assignments are to be submitted to the designated hand-in boxes on IW Level 6 with a signed cover sheet attached.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M11 (Honours Mark Scheme) Grade Grade reflects following criteria for allocation of grade Reported on Official Transcript Fail A mark between 1-49 F Third Class A mark between 50-59 3 Second Class Div B A mark between 60-69 2B Second Class Div A A mark between 70-79 2A First Class A mark between 80-100 1 Result Pending An interim result RP Continuing Continuing CN Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.