成人大片

PURE MTH 4123 - Fields and Modules - Honours

North Terrace Campus - Semester 2 - 2016

This subject presents the foundational material for the last of the basic algebraic structures pervading contemporary pure mathematics, namely fields and modules. The basic definitions and elementary results are given, followed by two important applications of the theory: to the classification of finitely generated abelian groups, and to Jordan canonical form for matrices. The subject concludes by returning to fields to present interesting applications of the theory. Fields: vector spaces, matrices, characteristic values; extension fields. Modules: finitely generated modules over a PID; canonical forms for matrices; Jordan canonical form. Applications of fields to algebraic and geometric problems.

  • General Course Information
    Course Details
    Course Code PURE MTH 4123
    Course Fields and Modules - Honours
    Coordinating Unit Mathematical Sciences
    Term Semester 2
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 3 hours per week
    Available for Study Abroad and Exchange
    Prerequisites MATHS 1012
    Assumed Knowledge PURE MTH 2106, PURE MTH 3007
    Assessment ongoing assessment 30%, exam 70%
    Course Staff

    Course Coordinator: Dr Peter Hochs

    Course Timetable

    The full timetable of all activities for this course can be accessed from .

  • Learning Outcomes
    Course Learning Outcomes
    1 Demonstrate understanding of the concepts of a field and a module and their role in mathematics.
    2 Demonstrate familiarity with a range of examples of these structures.
    3 Prove the basic results of field theory and module theory.
    4 Explain the structure theorem for finitely generated modules over a principal ring and its applications to abelian groups and matrices.
    5 Apply the theory in the course to solve a variety of problems at an appropriate level of difficulty.
    6 Demonstrate skills in communicating mathematics orally and in writing.
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    1, 2, 3, 4, 5
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    1, 2, 3, 4, 5, 6
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    6
  • Learning Resources
    Required Resources
    None.
    Recommended Resources
    Students may wish to consult any of the following books, available in the Library.

    M. Artin, “Algebra”.
    J. A. Beachy, “Introductory lectures on rings and modules”.
    J. B. Fraleigh, “A first course in abstract algebra”.
    B. Hartley, T. O. Hawkes, “Rings, modules and linear algebra”.
    I. N. Herstein, “Topics in algebra”.
    S. Lang, “Algebra”.
    S. Lang, “Undergraduate algebra”.
    R. Y. Sharp, “Steps in commutative algebra”.
    Online Learning
    Assignments, tutorial exercises, handouts, and course announcements will be posted on MyUni.

    S. Lang, “Undergraduate algebra”, is available as an e-book via the Library catalogue.
  • Learning & Teaching Activities
    Learning & Teaching Modes
    The lecturer guides the students through the course material in 30 lectures. Students are expected to engage with the material in the lectures. Interaction with the lecturer and discussion of any difficulties that arise during the lecture is encouraged. Students are expected to attend all lectures. In fortnightly tutorials students present their solutions to assigned exercises and discuss them with the lecturer and each other. Fortnightly homework assignments help students strengthen their understanding of the theory and their skills in applying it, and allow them to gauge their progress.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

    Activity Quantity Workload hours
    Lectures 30 90
    Tutorials 5 25
    Assignments 6 42
    Total 157
    Learning Activities Summary
    1. Fields (approx. 11 lectures): Fields, vector spaces, polynomials over a field, field extensions, algebraic elements, primitive elements, splitting fields and finite fields.

    2. Modules (approx. 9 lectures): Modules, submodules, quotient modules, homomorphisms, isomorphism theorems, torsion, free modules, cyclic modules, direct sums, finitely generated modules over a principal ring.

    3. Applications (approx. 10 lectures) to matrices, the axiom of choice and Zorn's lemma.

    Tutorials in Weeks 3, 5, 7, 9, 11 cover the material of the previous two weeks.
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment taskTask typeDueWeightingLearning outcomes
    Examination Summative Examination period 70% All
    Homework assignments Formative and summative Weeks 2, 4, 6, 8, 10, 12 24% All
    Tutorial exercises Formative Weeks 3, 5, 7, 9, 11 6% All
    Assessment Related Requirements
    An aggregate score of 50% is required to pass the course.
    Assessment Detail
    Assessment taskSetDueWeighting
    Assignment 1 Week 1 Week 2 4%
    Tutorial exercises 1 Week 2 Week 3 see below
    Assignment 2 Week 3 Week 4 4%
    Tutorial exercises 2 Week 4 Week 5
    Assignment 3 Week 5 Week 6 4%
    Tutorial exercises 3 Week 6 Week 7
    Assignment 4 Week 7 Week 8 4%
    Tutorial exercises 4 Week 8 Week 9
    Assignment 5 Week 9 Week 10 4%
    Tutorial exercises 5 Week 10 Week 11
    Assignment 6 Week 11 Week 12 4%
    It is expected that each student will present twice in the tutorials. Each presentation will be worth 3%. This may have to be adjusted depending on enrolment.

    Submission
    Homework assignments must be submitted on time with a signed assessment cover sheet. Late assignments will not be accepted. Assignments will be returned within two weeks. Students may be excused from an assignment for medical or compassionate reasons. Documentation is required and the lecturer must be notified as soon as possible.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M11 (Honours Mark Scheme)
    GradeGrade reflects following criteria for allocation of gradeReported on Official Transcript
    Fail A mark between 1-49 F
    Third Class A mark between 50-59 3
    Second Class Div B A mark between 60-69 2B
    Second Class Div A A mark between 70-79 2A
    First Class A mark between 80-100 1
    Result Pending An interim result RP
    Continuing Continuing CN

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through .

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.

The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.