PURE MTH 4107 - Groups and Rings - Honours
North Terrace Campus - Semester 1 - 2025
-
General Course Information
Course Details
Course Code PURE MTH 4107 Course Groups and Rings - Honours Coordinating Unit Mathematical Sciences Term Semester 1 Level Undergraduate Location/s North Terrace Campus Units 3 Contact Up to 3 hours per week Available for Study Abroad and Exchange Y Prerequisites MATHS 1012 Incompatible PURE MTH 3007 Assumed Knowledge PURE MTH 2106 Restrictions Honours students only Assessment Ongoing assessments, exam Course Staff
Course Coordinator: Dr Stuart Johnson
Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
1. Demonstrate understanding of the idea of a group, a ring and an integral domain, and be aware of examples of these structures in mathematics. 2. Appreciate and be able to prove the basic results of group theory and ring theory. 3. Understand and be able to apply more advanced results on groups: the fundamental theorem of finitely generated abelian groups, Burnside's theorem and the Sylow theorems. 4. Appreciate the significance of unique factorization in rings and integral domains. 5. Apply the theory in the course to solve a variety of problems at an appropriate level of difficulty. 6. Demonstrate skills in communicating mathematics orally and in writing. University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Attribute 1: Deep discipline knowledge and intellectual breadth
Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.
1,2,3,4,5,6 Attribute 2: Creative and critical thinking, and problem solving
Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.
all Attribute 3: Teamwork and communication skills
Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.
7 Attribute 4: Professionalism and leadership readiness
Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.
7 Attribute 8: Self-awareness and emotional intelligence
Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.
7 -
Learning Resources
Required Resources
None.Recommended Resources
J. B. Fraleigh, “A first course in abstract algebra", Addison-Wesley, 7th edition, 2002; covers most of the material in the course in a similar manner to that presented in lectures.
M. A. Armstrong, "Groups and Symmetry", Springer, 1988; covers most of the material about groups in the course, but in addition has many geometric applications and examples.
There are many other introductory texts on abstract algebra in the library which students may find useful as references.Online Learning
Course notes and topic videos are provided each week on MyUni, together with practice quizzes and workshop problems. -
Learning & Teaching Activities
Learning & Teaching Modes
Course notes and topic videos will be made available through MyUni. Students
are expected to work through these each week, following up with
quizzes, seminars and workshopss to reinforce the material and provide
practical experience at working with it. The lecturer will be available to help with weekly consulting sessions, and through interaction in the course discussion board.
Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
Activity Quantity Workload Hours Course Videos / Quizzes 62 Seminars 12 18 Workshops 12 18 Assignments 4 40 Test Study 2 12 Total 150 Learning Activities Summary
Lecture Schedule Week 1 Groups Definitions and Examples Week 2 Groups Cosets and Normal Subgroups Week 3 Groups New Groups from Old I: Factor Groups Week 4 Groups New Groups from Old II: Product Groups Week 5 Groups Finitely Generated Abelian groups Week 6 Groups Group Actions on Sets Week 7 Groups The Sylow theorems Week 8 Groups Rings, Fields and Integral Domains Week 9 Rings Polynomial rings Week 10 Rings Ideals and factor rings Week 11 Rings Eudlidean domains and Principal Ideal Domains Week 12 Rings Unique Factorisations Domains -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment task Task type Due Weighting Learning outcomes Examination Summative Examination period 60% All Homework assignments Formative and summative Weeks 3,7,11,13 20% All Mid Semester Tests Formative and summative Weeks 5 and 9 15% All Class Participation Formative Every Week 5% All Assessment Related Requirements
An aggregate score of 50% is required to pass the course. In addition a grade of at least 40% is required on the final exam.Assessment Detail
Assessment task Set Due Weighting Assignment 1 Week 1 Week 3 5% Assignment 2 Week 5 Week 7 5% Assignment 3 Week 9 Week 11 5% Assignment 4 Week 11 Week 13 5% Test 1 Week 5 Week 5 7.5% Test 2 Week 9 Week 9 7.5%
Submission
All work will be submitted electronically through MyUni.
Students may be elegible for an extension or exemption from an
assignment for medical or compassionate reasons. Documentation is
required and the lecturer must be notified as soon as possible.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M11 (Honours Mark Scheme) Grade Grade reflects following criteria for allocation of grade Reported on Official Transcript Fail A mark between 1-49 F Third Class A mark between 50-59 3 Second Class Div B A mark between 60-69 2B Second Class Div A A mark between 70-79 2A First Class A mark between 80-100 1 Result Pending An interim result RP Continuing Continuing CN Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.