CHEM ENG 7051 - Chemical Reactor Engineering PG
North Terrace Campus - Semester 1 - 2022
-
General Course Information
Course Details
Course Code CHEM ENG 7051 Course Chemical Reactor Engineering PG Coordinating Unit School of Chemical Eng and Advanced Materials(Ina) Term Semester 1 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Contact Up to 4 hours per week Available for Study Abroad and Exchange Y Incompatible CHEM 2510 or CHEM 2530 Assessment Mid-Semester tests, tutorials, quizzes, final examination Course Staff
Course Coordinator: Associate Professor Philip van Eyk
Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
On successful completion of this course students will be able to:
1 Interpret and analyse chemical and biochemical reaction kinetics data; 2 Apply reaction kinetics principles in chemical and biochemical reaction engineering; 3 Identify and formulate problems in chemical and biochemical reaction engineering and find appropriate solutions; and 4 Specify and size the most common industrial chemical and biochemical reactors to achieve production goals for processes involving homogeneous or heterogenous reaction systems.
The above course learning outcomes are aligned with the Engineers Australia .
The course is designed to develop the following Elements of Competency: 1.1 1.2 1.3 1.4 1.5 1.6 2.1 2.2 2.3 2.4 3.2 3.3 3.4 3.5 3.6
University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Attribute 1: Deep discipline knowledge and intellectual breadth
Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.
2, 4 Attribute 2: Creative and critical thinking, and problem solving
Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.
2-4 Attribute 3: Teamwork and communication skills
Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.
1-4 Attribute 4: Professionalism and leadership readiness
Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.
2-4 Attribute 5: Intercultural and ethical competency
Graduates are responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.
2-4 Attribute 8: Self-awareness and emotional intelligence
Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.
1-4 -
Learning Resources
Recommended Resources
Textbook
Fogler, HS, 2005, Elements of Chemical Reaction Engineering, 4th Edition, Prentice Hall
Reference Book
Schuler, ML & Kargi, F, 2002, Bioprocess Engineering, 2nd Edition, Prentice Hall.
Online Learning
A range of online resources will be provided via MyUni.
-
Learning & Teaching Activities
Learning & Teaching Modes
This course uses a number of different teaching and learning approaches including lectures, problem
solving tutorials, a Design project (course Master student only) and a mid-semester test and final examination.
Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
Activity Contact Hours Workload Hours Lectures 22 44 Tutorials 16 32 In-class test 2 10 Design Project 15 30 TOTAL 55 120 Learning Activities Summary
Topic 1: Introduction and Design Fundamentals
· Process design of reactors: relationship between laboratory data, pilot-plant data and commercial plant. Classification of reactors: method of operation, shape, and phases in the reaction mixture.
Examples of industrial chemical and biochemical reactors. Terminology: rate, order, molecularity, conversion, yield, and selectivity. Mole balances, rate laws and stoichiometry.
Topic 2: Isothermal Batch Reactor
· Derivation of the design equation. Calculation of reactor size for known kinetics and specified production rate.
Topic 3: Isothermal tubular plug-flow reactor (PFR)
· Derivation of the design equation for steady-state plug flow. Comparison with batch reactors. Space velocity, space time, mean residence time. Operation of multiple reactors.
Topic 4: Isothermal continuous stirred-tank reactor (CSTR)
· Derivation of the design equation for steady-state well-mixed flow.
Operation of multiple reactors. Comparison of PFR and CSTR.
Topic 5: Reactor design for multiple reaction systems
· Parallel, series, and reversible reactions, and combinations thereof. Elimination of time as an independent variable. Optimisation of product distribution via control of concentration and contacting patterns.
Topic 6: Bioreactions and Bioreactors
· Reaction mechanisms, pathways and rate laws; details of enzyme reactions; pharmacokinetics. Bioreactor fundamentals and design equations.
Topic 7: Non-isothermal Reactor Design
· Influence of temperature on kinetics. Factors affecting choice of
reactor operating temperature land range. Means of keeping a reaction mixture at designed temperature levels. Adiabatic and non-adiabatic reactors. The non-isothermal CSTR: heat generation and heat removal for different reaction types; autothermal operation – “ignition” and “extinction”; relationship between conversion and temperature; energy-balance and mass-balance combination. The non-isothermal batch reactor: calculation of conversion by graphical and integration methods. The non-isothermal PFR: conversion as a function of temperature and reactor length for simple and complex reactions. Runaway reactions.
Topic 8: Catalysis and Catalytic Reactors
· Catalysts, catalysis and catalytic reaction steps. Rate law, mechanism and rate-limiting step for catalytic reactions. Heterogeneous data analysis for reactor design. Porous and nonporous catalysts: internal and external diffusion effects on heterogeneous reactions. Heterogeneous
reactor design: packed bed and fluidized bed reactors. Pressure drop. Catalyst poisoning. -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment Task Weighting (%) Individual/ Group Formative/ Summative Due (week)* Hurdle criteria Learning outcomes On-line Theory Quizzes 5 Individual Formative 2-12 1. 2. 3. 4. Tutorials 20 Individual Formative 3 -7, 9-13 1. 2. 3. 4. Mid-Semester Test 15 Individual Summative 7 1. 2. 3. 4. Final Exam 60 Individual Summative 13 1. 2. 3. 4. Total 100
This assessment breakdown complies with the University's Assessment for Coursework Programs Policy.
Due to the current COVID-19 situation modified arrangements have been made to assessments to facilitate remote learning and teaching. Assessment details provided here reflect recent updates.
Quizzes: these will remain online quizzes based on the theory content. The percentage these are worth will increase to 10% of the final grade.
Tutorials: these will remain the same written solutions to problems posed each week. The percentage these are worth will stay at 20% of the final grade.
Mid Semester Test: this will be a timed online test in Week 7 of the course and will cover the first half of the content. Because it is online it will necessitate it being Open book. You will be required to submit attachments for working as well as some spreadsheets using Excel. Methods are currently being developed to ensure it is your own individual work. The percentage this will be worth will go to 20% of the final grade.
Final Exam: this will be a timed online exam in the exam period and will cover the whole course content. Because it is online it will necessitate it being Open book. Similar to the Mid-Semester Test, you will be required to submit attachments for working as well as some spreadsheets using Excel. Methods are currently being developed to ensure it is your own individual work. The percentage this will be worth will reduce to 50% of the final grade to account for the different style of exam than conventional exams.Assessment Detail
No information currently available.
Submission
No information currently available.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.