PLANT SC 3500WT - Biotechnology in the Food & Wine Industries III
Waite Campus - Semester 1 - 2018
-
General Course Information
Course Details
Course Code PLANT SC 3500WT Course Biotechnology in the Food & Wine Industries III Coordinating Unit School of Agriculture, Food and Wine Term Semester 1 Level Undergraduate Location/s Waite Campus Units 3 Contact Up to 7 hours per week for 6 weeks Available for Study Abroad and Exchange Y Incompatible PLANT SC 2520WT Assumed Knowledge BIOLOGY 1101, BIOLOGY 1202 & ANIML SC 2501WT or GENETICS 2510 or equivalent Assessment Practical reports, assignment, written exam Course Staff
Course Coordinator: Dr Karina Riggs
Dr Karina RiggsCourse Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
The anticipated knowledge, skills and/or attitude to be developed by the student are:
Demonstrated ability to
1 Predict changes to an organism using genetic engineering when provided with a biochemical pathway and knowledge of the gene construct 2 Evaluate relative advantage and disadvantages of genetic modification (GM) and non-GM strategies to solve real-life problems 3 Apply a range of biotechnological solutions to improve the nutrition of food and/or the sustainability of food production for future generations 4 Use terminology, appropriate to the field of biotechnology, correctly and contextually 5 Conduct, analyse and interpret results of experiments, and effectively communicate these in written reports 6 Critically evaluate scientific research papers and develop a reserach project to address identified gaps 7 Explain the benefits and limitations (scientific and ethical) of biotechnology relative to existing practice University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Deep discipline knowledge
- informed and infused by cutting edge research, scaffolded throughout their program of studies
- acquired from personal interaction with research active educators, from year 1
- accredited or validated against national or international standards (for relevant programs)
1, 4, 7 Critical thinking and problem solving
- steeped in research methods and rigor
- based on empirical evidence and the scientific approach to knowledge development
- demonstrated through appropriate and relevant assessment
1, 2, 3, 5, 7 Teamwork and communication skills
- developed from, with, and via the SGDE
- honed through assessment and practice throughout the program of studies
- encouraged and valued in all aspects of learning
5-6 Career and leadership readiness
- technology savvy
- professional and, where relevant, fully accredited
- forward thinking and well informed
- tested and validated by work based experiences
1-7 Intercultural and ethical competency
- adept at operating in other cultures
- comfortable with different nationalities and social contexts
- able to determine and contribute to desirable social outcomes
- demonstrated by study abroad or with an understanding of indigenous knowledges
5-7 Self-awareness and emotional intelligence
- a capacity for self-reflection and a willingness to engage in self-appraisal
- open to objective and constructive feedback from supervisors and peers
- able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
6-7 -
Learning Resources
Required Resources
A lab coat, safety glasses and closed footwear must be worn in every practical session.Recommended Resources
Recommended Reading
Communication
Cargill M and Bellotti M. (2004) Written Communicatio int eh Agricultural and Natural Resource Sciences. The 成人大片.
.
Biotechnology
Belitz HD and Grosch W. (1987) Food Chemistry (2nd edn.). Springer Verlag. Berlin.
Burton RA et al. (2006) Cellulolse synthase-like CsIF genes medicate the synthesis of cell callus (1,3;1,4)-B-D-glucans. Science. 311: 1940-1942
Collin P et al. (2004) The safe threshold for gluten contamination in gluten-free products. Can trace amounts be accepted in the treatment of coeliac disease? Aliment Parmacol ther. 19: 1277-1283
Hansen HB et al. (2004) Grain characteristics, chemical composition and functional properties of rye as influcenced by genotype and harvest year. J Agric Food Chem. 52: 2282-2291
Hischenhuber C et al. (2006) Review article: Safe amounts of gluten for patients with wheat allergy or coeliac disease. Aliment Parmacol Ther. 23: 559-575
Holtekjolen ADK et al. (2006) Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem. 94: 348-358
Keegstra K and Walton J. (2006) Beta-glucans-brewer's bane, dieticians delight. Science. 311: 1872-1873
Shewry PR and Halford NG. (2002) Cereal seed storage proteins: structures, properties and role in grain utilisation. J. Exp. Bot. 53: 947-858
Spaenij-dekking L et al. (2005) Natural variation in toxicity of wheat. Potential for selction of non-toxic varieties of coeliac disease patients. Gastroenterology. 129: 797-806
Tamine AY et al. (1998) Laboratory made Kishk from wheat, oat and barley: 1. Production and comparison of chemical and nutritional composition of Burghol. Food Res Intl. 30: 311-317
Online Learning
Teaching and course materials will be posted in MyUni (). Lectures will be recorded and posted on MyUni.
Interactive pre-laboratory activities will be used in formative assessment.
-
Learning & Teaching Activities
Learning & Teaching Modes
Lectures are supported by online activities and laboratory work that develop and reinforce material covered in lectures. The practicals allow students to synthesise and apply the skills learned in the course to address practical situations. The project work in weeks 7-12 allows students to develop skills in critiquing scientific papers, solving globally significant problems and communicate scientific knowledge in written form to a professional standard.
Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
6 x 2 hour lectures
5 x 1 hour Tutorial (weeks 8 to 12)
4 Practicals of 4 hours (weeks 8 to 11)
1 team based Project Proposal
1 x 4 hr Computer Practical/ Workshop on Peer Review and Information Gathering in the first week; includes formative tasks,
group work and question time in tutorials to assist in preparation of the Project Proposal
This course is taught in either Weeks 7 to 12 or 8 to 13 to accommodate the Industry Placement/Experience in the Bachelor of Food and Nutrition Science and Bachelor of Viticulture and Oenology Programs, respectively.A student enrolled in a 3 unit course, such as this, should expect to spend, on average 24 hours per week on the studies required. This includes both the formal contact time required to the course (e.g., lectures and practicals), as well as non-contact time (e.g., reading and revision).
Learning Activities Summary
The course content will include the following:
Week 7
Lecture 1: Biotechnology for the food and wine industries
Lecture 2: DNA testing and its applications in the food and wine industries
Tutorial: Introduction to the Project
Practical: Identification and comparison of GMO's- Part 1
Week 8
Lecture 3: Genetic modification- Methods and approaches
Lecture 4: Genetic modification- Strategies and applications
Tutorial: Project
Practical: Identification and comparison of GMO's - Part 2
Week 9
Lecture 5: Commercial use of enzymes in industry - Part 1
Lecture 6: Commercial use of enzymes in industry - Part 2
Tutorial: Project
Practical: Recombinant enzymes in food processing- Part 1
Week 10
Lecture 7: Plant cell walls, carbohydrates and human health
Lecture 8: Plant cell walls and renewable biofuel production
Tutorial: Project
Practical: Recombinant enzymes in food processing- Part 2
Week 11
Lecture 9: GM organisms and products: benefits and risk
Lecture 10: New methods in biotechnology: Science and regulation
Tutorial: Project
Practical: Wine fermentation and yeasts- Part 1
Week 12
Lecture 11: Biotechnology in the wine industry - Part 1
Lecture 12: Biotechnology in the wine industry - Part 2
Tutorial: Exam revision
Practical: Wine fermentation and yeasts- Part 2
Note: Lecture order may change from year to year depending on lecturer availability.Specific Course Requirements
Attendance at practicals and tutorials in compulsory.
To pass the course, a student must obtain a minimum of 40% for the written exam(s). There will be no additional assessment for the
practical work or project proposal. -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment task Type of assessment Percentage of total assessment for grading purposes Hurdle (Yes/No) Outcomes being assessed Pre-lab online tasks Formative 0% No 1-5 Examination Summative 40% Yes 1-4 Practical reports Formative/Summative 30% No 4,5 Project Formative/Summative 30% No 4,6,7 To pass the course, a student must obtain a minimum of 40% for the written exam(s). There will be no additional assessment for the practical work or project.
Assessment Related Requirements
Attendance to all tutorial and practical sessions is compulsory and will include compulsory online formative assessment tasks (practicals only). These formative assessment tasks (pre- and/or during practical classes) are designed to guide students to the important material required for the practical report. A minimum standard will need to be achieved and students may re-submit to improve their mark. There will be no opportunity for additional assessment on the practical or project proposal components of the course.
To pass this course, a student must obtain a minimum of 40% for the written exam (hurdle requirement).Assessment Detail
Exam: (40% of total course grade). A final exam will assess the students’ knowledge, ability to apply knowledge and critical analysis skills.
Practical Reports: (30% of total course grade). Three practical reports (extending across 2 weeks, 10% each).
Practical 1: Identification of Genetically Modified Organisms; is a complete practical report write up including Aims, Introduction, Results, Discussion, Conclusion and Reference list. All data are collated and analysed by students to prepare individual reports. Communications skills, ability to analyse and critically evaluate Genetically Modified Organisms and the relevance to food products are assessed in the report.
Practical 2:Recombinant enzymes in food processing; focuses on data presentation and summarising key points from three different, but related experiments. A formative assessment component is included to provide students with feedback before submission of the final assessment task. All data are collated and analysed by students to prepare individual reports. Communications skills, ability to analyse and critically evaluate how enzyme are used in the food and wine industry are assessed in the report.
Practical 3: The role of yeast in wine fermentation; focuses on determining how yeasts with different mating types effect fermentation properties of wine. All data are collated and analysed by students to prepare individual reports. Students are required to present the data as would be expected for a presentation at a conference. Communications skills, ability to analyse and critically evaluate how yeast type can alter the properties of wine are assessed in the report.
Students will receive written feedback on each practical report submitted for assessment.
Project Proposal: (30% of total course grade): “Developing Convincing Project Proposals”. This assessment task involves a peer-supported learning environment, where students learn to confidently critique scientific papers and discuss scientific methods, formulate questions and devise experiments to address specific questions, summarise the important knowledge and gaps in an area of global significance and effectively communicate in written form to produce a document of a professional standard. There is a formative peer feedback component in the Week 11 or 12 tutorial. Successful completion (on-time according to written instructions) together with self and peer-evaluation of contributions throughout the project will provide evidence of interpersonal and life-long learning skills such as time management.
Quizzes: (formative)
Students will complete a total of 6 online quizzes during semester (formative). Quizzes are designed to refresh knowledge of a topic, link theory with practice and make students aware of HSW issues in the laboratory sessions. Quizzes will consist of multi-choice questions. They are pre-class activities. Students receive immediate feedback while submitting quiz answers.
Diagnostic and formative assessments are included in pre-lecture online activities and lecture activities such as “think pair share”, quizzes and group discussions in class.Submission
Late submission of assessments
If an extension is not applied for, or not granted then a penalty for late submission will apply. A penalty of 10% of the value of the assignment for each calendar day that is late (i.e. weekends count as 2 days), up to a maximum of 50% of the available marks will be applied. This means that an assignment that is 5 days or more late without an approved extension can only receive a maximum of 50% of the mark.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.