MECH ENG 2102 - Sports Engineering I
North Terrace Campus - Semester 1 - 2020
-
General Course Information
Course Details
Course Code MECH ENG 2102 Course Sports Engineering I Coordinating Unit School of Mechanical Engineering Term Semester 1 Level Undergraduate Location/s North Terrace Campus Units 3 Contact Up to 4 hours per week. Available for Study Abroad and Exchange Y Assumed Knowledge MATHS 1012 Restrictions Available to Bachelor of Engineering (Honours) (Mechanical) & associated double degree students only Assessment Assignments, Laboratories, Tutorials, Group Presentation, Final exam Course Staff
Course Coordinator: Associate Professor Paul Grimshaw
Name Role Building/Room Email A/Prof
Paul GrimshawCourse Coordinator/Lecturer Engineering South Building, S235 paul.grimshaw@adelaide.edu.au Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
On successful completion of this course students will be able to:
1 Define the principles of instrumentation; 2 Discuss the concepts of instrumenting sports equipment, athletes and sports facilities; 3 Define the principles of sensor systems, measurement chains and signal processing; 4 Design instrumented equipment based on the rules of governing sporting bodies; 5 Design instrumented equipment without changing the physical and mechanical properties of equipment; 6 Calculate and graphically represent vector diagrams and instantaneous centres of pressure; 7 Explain principles of quantification of performance and optimisation of training; 8 Explain the principles of biofeedback systems; 9 Instrument an athlete with various instrumentation systems and skin markers; 10 Explain design instrumentation systems.
The above course learning outcomes are aligned with the Engineers Australia .
The course is designed to develop the following Elements of Competency: 1.1 1.2 1.3 1.4 1.5 1.6 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 3.5 3.6
University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Deep discipline knowledge
- informed and infused by cutting edge research, scaffolded throughout their program of studies
- acquired from personal interaction with research active educators, from year 1
- accredited or validated against national or international standards (for relevant programs)
1-10 Critical thinking and problem solving
- steeped in research methods and rigor
- based on empirical evidence and the scientific approach to knowledge development
- demonstrated through appropriate and relevant assessment
1-10 Teamwork and communication skills
- developed from, with, and via the SGDE
- honed through assessment and practice throughout the program of studies
- encouraged and valued in all aspects of learning
1-10 Career and leadership readiness
- technology savvy
- professional and, where relevant, fully accredited
- forward thinking and well informed
- tested and validated by work based experiences
4,9,10 Intercultural and ethical competency
- adept at operating in other cultures
- comfortable with different nationalities and social contexts
- able to determine and contribute to desirable social outcomes
- demonstrated by study abroad or with an understanding of indigenous knowledges
2,4,7-10 Self-awareness and emotional intelligence
- a capacity for self-reflection and a willingness to engage in self-appraisal
- open to objective and constructive feedback from supervisors and peers
- able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
1,2,10 -
Learning Resources
Required Resources
No required texts.
Recommended Resources
The following texts are recommended:
- Grimshaw P N, Lees A, Fowler, N, and Burden A. (2007) Instant notes in Sport and Exercise Biomechanics. Taylor and Francis, London. ISBN – 1 8599 6284 X.
Section F – Measurement Techniques (pp 295–352) - Hong Y, editor (2002) International Research in Sports Biomechanics. Routledge Publishers, New York. ISBN – 0415262302.
Parts 5, 7, and 8 (pp 137–168, 203–242 and 243–286) - Subic A J and Haake S J, editors (2000) The Engineering of Sport: research, development and innovation. Blackwell Scientific, Oxford, UK. ISBN – 0-632-055634.
Parts 1 & 2 (pages 1–158)
Please see the MyUni learning area for this course which is located at the following: and type in the course name or code (Sports Engineering I – MECH ENG 2102)
Online Learning
Please see the learning area for this course. - Grimshaw P N, Lees A, Fowler, N, and Burden A. (2007) Instant notes in Sport and Exercise Biomechanics. Taylor and Francis, London. ISBN – 1 8599 6284 X.
-
Learning & Teaching Activities
Learning & Teaching Modes
As per university recommendations, it is expected that students spend 48hrs/week during teaching periods, and that a 3 unit course has a minimum workload of 156 hours regardless of the length of the course. Additional time may need to be spent acquiring assumed knowledge, working on assessment during non-teaching periods, and preparing for and attending examinations
Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
45 hours lectures and tutorials and 6 hours laboratory classes.
Learning Activities Summary
The following curriculum is subject to change.
Introduction and Overview (1hr)
- General principles and purpose of instrumentation in sports
- Workflow of instrumentation and business aspects
Sensors, data transfer and signal processing (10 hrs)
- Sensors and transducers
- Mechanics and design of sensors
- Properties of sensors (including force transducers, accelerometers, IMUs, pressure sensors, ONT, optical sensors, MEMS transducers, GPS)
- Wireless technology, A/D boards and software systems
- Signal processing, fractal geometry
- Design and problems of measurement chains
Instrumentation of Equipment (10 hrs)
- Workflow of instrumentation, constraints, and sporting rules
- Product overview
- Definition and identification of performance parameters
- Optimisation of training and biofeedback
- Calculation and graphical representation of vector diagrams and instantaneous centres of pressure using software
- Design of instrumented equipment, sensor locations and balancing
- Application of instrumented equipment and case reports
- Instrumentation for testing of equipment
Instrumentation of the athlete (10 hrs)
- Overview of instrumentation systems
- Worn instrumentation and constraints
- Kinematic systems with skin markers (EGM, video, infrared, ultrasound, electromagnetic)
- Application of kinematic systems and case reports
- Performance analysis
- Golf swing analysers
Instrumentation of the environment and sports facilities (10 hrs)
- Video systems and software (Dartfish, SiliconCoach, Simi)
- Hawk Eye
- Infrared contact measurement (Hotspot)
- Application of video systems and case reports
- Performance analysis
Holistic instrumentation (2 hrs)
- Combination of different instrumentation systems
- Examples of measurement chains
- DIY instrumentation
Specific Course Requirements
None -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment Task Weighting (%) Individual/ Group Formative/ Summative Due (week)* Hurdle criteria Learning outcomes Assignment x 2 15 Individual Summative Weeks 2-6 1. 2. 3. 4. 5. Laboratories Report x 2 15 Group/Individual Summative Weeks 2-8 1. 2. 6. 7. 8. 9. 10. Group Project 10 Group/Individual Summative Weeks 6-10 1. 2. 3. 4. 7. 8. Final Exam 60 Individual Summative Weeks 15-16 1. 2. 3. 4. 6. 7. 8. Total 100
This assessment breakdown complies with the University's Assessment for Coursework Programs Policy.
Due to the current COVID-19 situation modified arrangements have been made to assessments to facilitate remote learning and teaching. Assessment details provided here reflect recent updates.
Assignment 1 and 2 will continue as normal and will be online submissions rather than hard copies to the submission boxes (the
submission time frame will remain the same).Assessment Related Requirements
None
Assessment Detail
Assignments and Tutorials (15%)
Throughout the course Sports Engineering 1 (MECH ENG 2102) you will be given assignments that relate to specific components/areas of the lectures. These assignments will be given throughout the course. In addition, you will be required to attend tutorials which will be related to particular problems given throughout the course.
Extensive use of Matlab will be used to aid your learning of the course material and to develop analytical skills used throughout your Sports Engineering degree.
Some assignments will be Matlab-based and may be submitted in groups of two.
Laboratory 1: Force Platform
The first laboratory is on the analysis of a vertical jump using the Kistler Force Platform. Students will be introduced to the capabilities and software used to perform measurements with the force platform, then individually execute a variety of vertical jumping maneuvers. Material is presented for the theoretical analysis for the same using basic projectile motion. In the follow-up session, the data recorded for each student will be analysed using Matlab. Each student is required to write an individual report to formally present their recorded data.
Laboratory 2: Sensors
The second lab is an introduction to basic sensor use to familiarise the students with taking a sensor and using it for generic instrumentation as appropriate for the situation. This includes measurement practicalities relating to the raw electrical signal such as dynamic range, discretisation, signal-to-noise ratio, and saturation. After this lab the students should be comfortable with choosing a basic sensor for a certain task, reading the raw signal into Matlab and generating meaningful results from it.
Laboratory 3: EMG
The third lab is an introduction to the use of electromyography to measure muscle activation using voltage measurements on the surface of the skin of a subject. As with the first lab, individual measurements will be taken for each student; a variety of tasks involving muscular contraction will be performed. Again, in the follow-up session the measured data will be analysed using Matlab and students are required to write individual reports to formally present their results.
Students should wear loose-fitting clothes to participate in this lab.
Group Project
The group project will be a self-directed task to be conducted using the Optitrack Motion Capture System in the Sports Engineering lab (S225). Assessment will be a peer-assessed oral presentation. Students will be responsible for choosing and area of investigation, and allocating time to perform experiments and analysis.Submission
Hard-copies of all assessments (assignments and lab reports) must be made in the Mechanical Engineering submission boxes on the second floor. Tutorials will be electronically assessed. Unless otherwise indicated, all work will be due before 9am Monday morning. Late submissions will not be tolerated without previous communication with me. However, I am happy to grant extensions liberally given more than, say, a couple day’s notice.
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.