ELEC ENG 7069 - Electric Energy Systems
North Terrace Campus - Semester 1 - 2017
-
General Course Information
Course Details
Course Code ELEC ENG 7069 Course Electric Energy Systems Coordinating Unit School of Electrical & Electronic Engineering Term Semester 1 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Contact Up to 7 hours per week Available for Study Abroad and Exchange Y Assumed Knowledge ELEC ENG 1009 or ELEC ENG 1100 or equivalent Assessment written exam, tutorials, online tests and practicals Course Staff
Course Coordinator: Dr Andrew Allison
Course Coordinator and Lecturer: Assoc. Prof. Wen Soong
Email: wen.soong@adelaide.edu.au
Office: Ingkarni Wardli 3.53
Phone: 8313 4117
Lecturer: Dr Andrew Allison
Email.andrew.allison@adelaide.edu.au
Office: Ingkarni Wardli 3.51
Phone:8313 5283Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
On successful completion of this course students will be able to:
1 Analyse AC power circuits using methods such as phasors, complex power, power flow, star/delta connections and single-phase equivalent circuits. 2 Explain concepts and analyse problems related to transformers including magnetostatics, electromagnetics, magnetic materials and ideal/non-ideal transformers. 3 Analyse the performance of a DC motor or generator using its equivalent circuit. Explain its operating principles and construction. 4 Analyse the performance of an induction machine using its equivalent circuit. Explain the operating principles, construction and concepts of slip, airgap power and maximum torque. 5 Analyse the performance of a synchronous machine using its equivalent circuit in per-unit form. Explain the operating principles, construction and concepts of rotor angle and excitation. 6 Describe the major components of an electric power system. Perform analysis of the voltages and the power flow of transmission lines. 7 Develop practical skills in performing tests on electrical machines to determine their parameters and performance. Analyse and discuss the results in experimental reports.
The above course learning outcomes are aligned with the Engineers Australia .
The course is designed to develop the following Elements of Competency: 1.1 1.2 1.3 1.4 1.5 1.6 2.1 2.2 2.3 3.2 3.5 3.6
University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Deep discipline knowledge
- informed and infused by cutting edge research, scaffolded throughout their program of studies
- acquired from personal interaction with research active educators, from year 1
- accredited or validated against national or international standards (for relevant programs)
1-7 Critical thinking and problem solving
- steeped in research methods and rigor
- based on empirical evidence and the scientific approach to knowledge development
- demonstrated through appropriate and relevant assessment
1-7 Teamwork and communication skills
- developed from, with, and via the SGDE
- honed through assessment and practice throughout the program of studies
- encouraged and valued in all aspects of learning
7 Career and leadership readiness
- technology savvy
- professional and, where relevant, fully accredited
- forward thinking and well informed
- tested and validated by work based experiences
7 -
Learning Resources
Required Resources
The following required resources are available on the course website:• Lecture notes: you can print these yourself, or purchase them from EEESAU (the local student branch of the Electrical and Electronic Engineering student society) at the beginning of the semester at reasonable cost, see signs around the Ingkarni Wardli building.• Online tests: these are both available and submitted on the course website.• Tutorial questions: these are available on the course website in the week leading up to the tutorial.Recommended Resources
1) Practice problems are available on the course website for most of the course segments. Some of these will be used in the online tests and tutorial questions.
2) Reference Books
The course lecture notes should provide sufficient information for most students, however you may find the following reference books useful if you are have difficulty with the material or are interested in learning more about any of the topics in this course.
Copies of the following books are available in the Barr Smith library.
• T. Wildi : “Electrical Machines, Drives, and Power Systems”, Prentice Hall, 6th edition.
• P.C. Sen: "Electric Machines and Power Electronics Principles", Wiley, 2nd edition.Online Learning
All course announcements will be made the course website. They will be available on the course announcement board.
The weekly online tests are conducted on the course website.
The use of the course discussion boards is strongly encouraged for questions relating to course material. Lecturers will make a best effort to respond promptly to questions raised on the discussion boards.
The course gradebook will be used to return continuous assessment marks. Students should check the Gradebook regularly and confirm their marks have been correctly entered.
Audio (and if facilities are available, also video) recordings of lectures will be made available on the course website. The video recordings consist of the image displayed on the digital projector. Note some lecture theatres have two digital projectors and in this case only the content displayed on one of the projectors will be available.
In addition, the following material will be provided on the course website at the start or during the course of the semester:
• Lecture notes and tutorial questions
• Past exams and quizzes
• Additional exercise problems -
Learning & Teaching Activities
Learning & Teaching Modes
1. Review of Power and Energy
2. Electric Energy Systems Analysis
3. Electromagnetics and Transformers
4. Review of Electrical Machines Basics
5. Review of DC Machine Analysis
6. Review of AC Machines
7. Induction Machines
8. Synchronous Machines
9. Introduction to Power Generation and Energy Systems
This material is presented in lectures and supported by problem-solving tutorials, formative online tests and optional exercise problems.
Tutorial problems should be attempted before the tutorial and this preparation is assessed at the start of each tutorial. The tutor will also go through selected questions on the board and students will be given opportunities to ask questions.
Online tests are automatically marked. Wrong answers are indicated and correct answers are provided. Students may attempt an online test as many times as they wish before its due date, but on each attempt will have to try all questions again. Some numerical values in questions may change between attempts. Students will be awarded the maximum mark from all of their attempts of a particular online test.
10. Application Lecture
This lecture gives an example of the practical application of the theory taught in the course. It is not examinable.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
This is a 3 unit course. The University expects students to spend around 156 hours of work for a 3 unit course. This corresponds to roughly 12 hours per week. The following breakdown is a guide only. Some students will need to spend more time, some less.
Activity Contact Hours Non-contact Hours Number Total Hours Lectures 1 1 (prep & revise*) 30 60 Special Lectures 1 0 1 1 Tutorials 1 2 (prep & revise*) 6 18 On-line Tests 0 3 (prep & revise*) 10 30 Practicals 3 9 (prep & write-up) 4 48 Total 157 Learning Activities Summary
1. Introduction
3 lectures
Outline
1.1 Introduction to electrical machines, mechanical and electric power, efficiency, energy costs
2. Electric Energy Systems Analysis
3.5 lectures
Outline
2.1 DC circuit analysis revision.
2.2 AC circuit analysis: phasors, complex power (real, reactive, apparent power), real and reactive power flow, power-factor correction, equivalent series and parallel RL circuits.
2.3 Three-phase AC circuit analysis: balanced systems, power flow, star/delta, three-phase terminology, single-phase equivalent circuit, power measurement.
3. Electromagnetics and Transformers
5 lectures
Outline
3.1 Magnetostatics: magnetic circuits, mmf, flux, reluctance, magnetic flux density, magnetic field intensity, permeability, Ampere’s law, concepts of leakage, fringing and saturation.
3.2 Electromagnetics: flux-linkage, inductance, Faraday’s law, induced voltage, magnetic energy and force. C.3 Magnetic materials: saturation, BH loops, iron loss (eddy-current, hysteresis), permanent magnets.
3.3 Transformers: ideal transformers, back-emf equation, practical transformers (construction, equivalent circuit, analysis).
4. Review of Electrical Machines Basics
1.5 lectures
Outline
4.1 Types of machines: DC, AC (induction, synchronous and universal), torque vs. speed curves, variable-speed operation.
5. Review of DC Machine Analysis
2.5 lectures
Outline
5.1 Linear and rotary DC machines, principles, construction, equivalent circuit analysis, torque vs. speed curves, generator and motor operation.
6. Review of AC Machines
1.5 lectures
Outline
6.1 Rotating magnetic fields, synchronous machine principles and operation, induction machine principles and operation.
7. Induction Machines
4 lectures
Outline
7.1 Applications, construction, principles, equivalent circuits, performance prediction
8. Synchronous Machines
4 lectures
Outline
8.1 Per-unit analysis: principles, base quantities, conversion, analysis.
8.2 Synchronous machines: applications, construction, principles, equivalent circuits, performance prediction.
9. Introduction to Power Generation and Energy Systems
4 lectures
Outline
9.1 Generation, transmission, distribution and usage.
9.2 Transmission lines: physical construction, transposition, modelling, nominal π-equivalent circuit, surge impedance loading, use of multiple phase conductors.
9.3 Power system control: real and reactive power flow for lossless inductive line, reactive power control (effect on voltage, generators, synchronous compensators, static compensators), real power control (effect on frequency, generators).
10. Application Lecture
1 lecture
Outline
10.1 To be announced.Specific Course Requirements
Laboratory clothing restrictions apply to the workshop sessions: closed-toe shoes; covered shoulders; long hair must be tied back. In addition, students must remove all hand and wrist based jewellery (including material bracelets), and must not eat or drink in the laboratories. Failure to adhere to these requirements will result in your removal from the laboratory. -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment Task Weighting (%) Individual/ Group Formative/ Summative Due (week)* Hurdle criteria Learning outcomes Tutorials 4 Individual Formative Weeks 3,5,6,8,10,11 1. 2. 3. 4. 5. 6. Quiz 8 Individual Formative Week 6 1. 2. 3. On-Line quizzes 8 Individual Formative Weeks 2 to 12 1. 2. 3. 4. 5. 6. Practicals 20 Individual Summative Weeks 6 to 12 Min 40% 1. 2. 4. 7. Examination 60 Individual Summative Exam Period Min 40% 1. 2. 3. 4. 5. 6. Total 100
This assessment breakdown is registered as an exemption to the University's . The exemption is related to the Procedures clause(s): 1. b. 3.
This course has a hurdle requirement. Meeting the specified hurdle criteria is a requirement for passing the course.Assessment Related Requirements
A hurdle requirement is defined by the University's as "...an assessment task mandating a minimum level of performance as a condition of passing the course.
In the Electric Energy System course there are two hurdle requirements, for which it is necessary to achieve at least 40% in,
• examination
• experimental section
If both of these are not achieved, the total course mark will be limited to a maximum of 49.
If a student fails to meet a hurdle requirement (normally no less than 40%),and is assigned a total mark for the course in the range of 45-49, then the student is entitled to an offer of additional assessment of some type. The type of assessment is to be decided by the School Assessment Review Committee when determining final results. The student’s final total mark will be entered at no more than 49% and the offer of an additional assessment will be specified eg. US01. Once the additional assessment has been completed, this mark will be included in the calculation of the total mark for the course and the better of the two results will apply. Note however that the maximum final result for a course in which a student has sat an additional assessment will be a “50 Pass”.
If a student is unable to meet a hurdle requirement related to an assessment piece (may be throughout semester or at semester’s end) due to medical or compassionate circumstances beyond their control, then the student is entitled to an offer of replacement assessment of some type. An interim result of RP will be entered for the student, and the student will be notified of the offer of a replacement assessment. Once the replacement assessment has been completed, the result of that assessment will be included in the calculation of the total mark for the course.
It is important to note that there is no replacement assessment offered for the practical component.Assessment Detail
See the notes for each assessment summary item in the table above.Submission
All written submissions to assessment activities are to be submitted electronically on the specified date and must be accompanied by a signed cover sheet. Copies of blank cover sheets are available from the School office in IW 3.26.
Late submissions of the experimental reports will be accepted but with a 20% penalty per day (or part of). All formative and summative assessments will have a two week turn-around time for provision of feedback to students.
Full details can be found on the School website:
Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.