成人大片

APP MTH 4048 - Applied Mathematics Topic C - Honours

North Terrace Campus - Semester 1 - 2017

Please contact the School of Mathematical Sciences for further details, or view course information on the School of Mathematical Sciences web site at http://www.maths.adelaide.edu.au

  • General Course Information
    Course Details
    Course Code APP MTH 4048
    Course Applied Mathematics Topic C - Honours
    Coordinating Unit Mathematical Sciences
    Term Semester 1
    Level Undergraduate
    Location/s North Terrace Campus
    Units 3
    Contact Up to 2.5 hours per week
    Available for Study Abroad and Exchange Y
    Restrictions May only be presented towards some Engineering Programs
    Assessment Ongoing assessment 30%, exam 70%
    Course Staff

    Course Coordinator: Dr Andrew Smith

    This is the same course as APP MTH 7044 - Applied Mathematics Topic C
    Course Timetable

    The full timetable of all activities for this course can be accessed from .

  • Learning Outcomes
    Course Learning Outcomes
    In 2017, the topic of this course will be Stochastic Processes for Population and Epidemic Modelling.

    Synopsis

    Randomness is an important factor in modelling and analyzing various real-life situations. In particular, stochastic (random) models can be used to make better informed decisions about changes in populations and epidemics. This course covers some key theory in the modelling of (meta)populations and epidemics, such as ODEs, discrete and continuous time Markov chains (DTMC and CTMC) and functional laws of large numbers.

    Learning Outcomes

    On successful completion of this course, students will be able to
    1. explain the basic model structures used in population and epidemic
    2. develop both ODE and CTMC models of population, as well as infectious disease, dynamics
    3. analytically derive stationary distributions for CTMCs of particular forms
    4. numerically evaluate the distribution of the state of the CTMC models given initial conditions
    5. gain a better appreciation for, and derive, the deterministic approximations to CTMCs
    6. a general appreciation of path integral methods for CTMCs
    7. present analyses and intepretations in written form
    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)
    Deep discipline knowledge
    • informed and infused by cutting edge research, scaffolded throughout their program of studies
    • acquired from personal interaction with research active educators, from year 1
    • accredited or validated against national or international standards (for relevant programs)
    all
    Critical thinking and problem solving
    • steeped in research methods and rigor
    • based on empirical evidence and the scientific approach to knowledge development
    • demonstrated through appropriate and relevant assessment
    all
    Teamwork and communication skills
    • developed from, with, and via the SGDE
    • honed through assessment and practice throughout the program of studies
    • encouraged and valued in all aspects of learning
    7
    Career and leadership readiness
    • technology savvy
    • professional and, where relevant, fully accredited
    • forward thinking and well informed
    • tested and validated by work based experiences
    4,7
    Self-awareness and emotional intelligence
    • a capacity for self-reflection and a willingness to engage in self-appraisal
    • open to objective and constructive feedback from supervisors and peers
    • able to negotiate difficult social situations, defuse conflict and engage positively in purposeful debate
    all
  • Learning Resources
    Required Resources
    None.
    Recommended Resources
    1. Grimmett and Stirzaker, Probability and random processes, OUP, 2001
    2. Kreyszig, Advanced engineering mathematics, Wiley
  • Learning & Teaching Activities
    Learning & Teaching Modes
    This course relies on lectures as the primary delivery mechanism for the material. Three written assignments will help students to gauge their progress and understanding of the course.
    Workload

    The information below is provided as a guide to assist students in engaging appropriately with the course requirements.


    Activity Quantity Workload Hours
    Lectures 30 90
    Assignments 3 68
    Total 158
    Learning Activities Summary
    Lecture Outline
    L1 - L4:    Deterministic models
    L5 - L11:    Stochastic models
    L12 - L18:    Deterministic limits
    L19 - L25:    Path integrals
    L26 - L28:    Bayesian inference
    L29:    Revision
  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Component Weighting Objective Assessed
    Exam 70% all
    Assignments 30% all
    Assessment Related Requirements
    An aggregate score of 50% or more is required to pass the course.  
    Assessment Detail
    There will be three assignments worth 30% of the total mark. The remaining 70% will come from the exam.
    Submission
    Assignments must be handed in person to the lecturer or submitted in the assigned assignment box if they are to be marked.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M11 (Honours Mark Scheme)
    GradeGrade reflects following criteria for allocation of gradeReported on Official Transcript
    Fail A mark between 1-49 F
    Third Class A mark between 50-59 3
    Second Class Div B A mark between 60-69 2B
    Second Class Div A A mark between 70-79 2A
    First Class A mark between 80-100 1
    Result Pending An interim result RP
    Continuing Continuing CN

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through .

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.

The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.