COMP SCI 7077 - Solving Engineering Models
North Terrace Campus - Semester 1 - 2017
-
General Course Information
Course Details
Course Code COMP SCI 7077 Course Solving Engineering Models Coordinating Unit Computer Science Term Semester 1 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Contact Up to 3 hours per week Available for Study Abroad and Exchange Y Assumed Knowledge basic level of proficiency in some programming language & engineering mathematics Assessment exam and/or assignments Course Staff
Course Coordinator: Professor David Suter
Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
1. To demonstrate an understanding of the methods used to solve certain simulation problems that are common in engineering.
2. To demonstrate a proficiency in the programming language Matlab such as is necessary to solve certain simulation problems that are common in engineering.
3. To demonstrate an ability to write efficient and robust programs which solve certain simulation problems that are common in engineering and to demonstrate an ability to recognize aberrant behaviours of the numerical methods used to solve them.
University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Deep discipline knowledge
- informed and infused by cutting edge research, scaffolded throughout their program of studies
- acquired from personal interaction with research active educators, from year 1
- accredited or validated against national or international standards (for relevant programs)
1-3 Critical thinking and problem solving
- steeped in research methods and rigor
- based on empirical evidence and the scientific approach to knowledge development
- demonstrated through appropriate and relevant assessment
1-3 Teamwork and communication skills
- developed from, with, and via the SGDE
- honed through assessment and practice throughout the program of studies
- encouraged and valued in all aspects of learning
1-3 -
Learning Resources
Required Resources
A comprehensive set of lecture notes will be given to each student at the start of the course. Students will be required to program extensively with the Matlab programming package. Matlab is available in many of the computing laboratories used by students. Tutorial and assignment questions will be posted on the MyUni course website
Students will need to submit their work via the MyUni website
Recommended Resources
There is no set text for this course but the following references may be useful. Some of these references will be discussed in lectures.[1] K.E. Atkinson. An introduction to numerical analysis. Wiley, 1978.[2] R.L. Burden and J.D. Faires. Numerical Analysis. PWS-Kent, Boston, 1993. 5th Edition.[3] S.C. Chapra and R.P. Canale. Numerical methods for Engineers. McGraw-Hill, New York, 1989. 4th edition.[4] W. Cheney and D. Kincaid. Numerical mathematics and computing. Brookes/Cole, 2nd edition, 1985.[5] S.D. Conte and C. de Boor. Elementary numerical analysis. McGraw-Hill, 3rd edition, 1980.[6] G. Dahlquist and A. Bjork. Numerical methods. Prentice-Hall, 1974.[7] L. Fausett. Numerical Methods: Algorithms and Applications. Prentice-Hall, New Jersey, 2003.[8] G.E. Forsythe, M. Malcolm, and C.B. Moler. Computer methods for mathematical computations.Prentice-Hall, 1977.[9] G.E. Forsythe and C.B. Moler. Computer solution of linear algebraic systems. Prentice-Hall, 1967.[10] C. Gerald and P. Wheatley. Applied numerical analysis. Addison-Wesley, 4th edition, 1989.[11] W. Hager. Applied numerical linear algebra. Prentice-Hall, 1988.[12] E. Isaacson and H.B. Keller. Analysis of numerical methods. Wiley, 1966.[13] R.L. Johnston. Numerical methods: A software approach. Wiley, 1982.[14] D. Kincaid and W. Cheney. Numerical Mathematics. Brookes/Cole, New York, 1996. 2nd Edition.[15] G. Linfield and J. Penny. Numerical methods using Matlab. Ellis-Horwood, 1995.[16] J.H. Matthews. Numerical methods. Prentice-Hall, 1987.[17] A. Ralston and P. Rabinowitz. A first course in numerical analysis. McGraw-Hill, 2nd edition,1978.[18] G. Strang. Linear algebra and its applications. HBJ, 3rd edition, 1988.[19] A. Gilat. MATLAB An Introduction with Applications. . 2nd Ed, John Wiley & Sons, 2005.Online Learning
Tutorial and assignment questions will be posted on the MyUni course website
Tutorial problem questions will be posted about one week before the tutorial session where the problems will be discussed. Students will be expected to attempt the problems and to engage in their discussion during the tutorial session. An announcement will be made in lectures before each assignment is posted. Students will need to submit their assignment work via the MyUni forum website
Students can use the MyUni forum to exchange ideas with other students in the course and ask questions about the course.
-
Learning & Teaching Activities
Learning & Teaching Modes
The course will be taught by lectures supported by problem-solving tutorials developing material covered in the lectures. There will be a strong emphasis on programming in Matlab.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
Students should expect to have to spend about 12 hours/week on reviewing lecture material, solving tutorial and assignment problems. Tutorials will start in the second week of the semester.Learning Activities Summary
A brief introduction to Matlab
Examples of simple applications that lead to linear systems of equations Numrical solution of ODEs in 1D
Initial value problems
Examples of engineering systems that lead to ODEs
Review of the numerical solution of first order ODEs
Adaptive step-size control
Numerical solution of systems of simultaneous first order ODEs
Numerical solution of second and higher order ODEs
Applications
Boundary value problems
An explicit finite difference method for the 1D wave equation
Finite difference solution of the potential equation
Systems of linear equations
Review of solution of linear systems of equations
Methods for special matrices arising from engineering problems
Iterative methods for large sparse systems
The ADI method for the 2D heat equationSpecific Course Requirements
Students who have Matlab software installed on their own computers can do all their programming on those machines. Other students will be able to use any of the computing laboratories openly provided to students in the FECMS. Students who have their own Matlab software can do all their programming on their own computers. Other students will be able to use any of the computing laboratories openly provided to students in the FECMS. -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Attendance at all tutorials is compulsory. There will be a written exam for this course. It will count for 70% of the final assessment (learning outcomes 1-3). There will be two assignments, each of which will count for 15% of the final assessment for the course (learning outcomes 1-3). The first assignment will be handed out before the mid-semester break. There are no joint or collaborative assessment tasks for this course.Assessment Detail
There will be two compulsory assignment tasks set during the course. Students will be required to submit their Matlab program work via MyUni. Assignments which are submitted late will incur a penalty which caps the maximum mark obtainable by 25% for each day late. Thus, submissions which are
1 day late - mark capped at 75%
2 days late - mark capped at 50%
3 days late - mark capped at 25%
more than 3 days late - no marks available.
Students may wish to submit their work even if no marks are available in order to get some feedback about the quality of their work from the markers of the assignments.Submission
Students will be required to submit their Matlab program work via Moodle and their accompanying handwritten work via submission boxes in the foyer (near Reception on Level 4) of the School of Computer Science.Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.