ECON 1008 - Data Analytics I
North Terrace Campus - Semester 2 - 2024
-
General Course Information
Course Details
Course Code ECON 1008 Course Data Analytics I Coordinating Unit Economics Term Semester 2 Level Undergraduate Location/s North Terrace Campus Units 3 Contact Up to 3 hours per week Available for Study Abroad and Exchange Y Incompatible ECON 1008OUA, ECON 1011, WINEMKTG 1015EX, STATS 1000, STATS 1004, STATS 1005, STATS 1504 Restrictions Not suitable for students enrolled in B.Eco(Adv) program Quota A quota may apply Assessment Typically tutorial participation and/or exercises, assignments, tests and final exam Course Staff
Course Coordinator: Dr Ruby Nguyen
Adelaide Semester 1 Name: Florian Ploeckl Email: florian.ploeckl@adelaide.edu.au Adelaide Semester 2 Name: tbc Email: tbc
UAC Adelaide
Students enrolled in the UAC version of the course should contact their college tutor in the first place.
UAC Melbourne
Students enrolled in the UAC Melbourne version of the course should contact their college tutor in the first place.
Course Timetable
The full timetable of all activities for this course can be accessed from .
The 成人大片 students
- Students in this course are expected to attend two hours of lecture and one 1-hour tutorial class each week.
- Lectures start in Week 1
- Tutorials start in Week 2 AND ASSESSMENT in tutorials BEGINS in Week 2.
UAC students
- Students in this course are expected to attend two 1-hour lectures and one 2-hour practical (tutorial) class each week.
- PRACTICALS (tutorials) commence in WEEK 2 AND ASSESSMENT in practicals BEGINS in WEEK 2.
- ECON 1008UAC 成人大片 College students are asked to read the ECON 1008 Course Outline.
-
Learning Outcomes
Course Learning Outcomes
On successful completion of this course, students will be able to:
- Apply correctly a variety of statistical techniques, both descriptive and inferential.
- Interpret, in plain language, the application and outcomes of statistical techniques.
- Interpret computer output and use it to solve problems.
- Recognize inappropriate use or interpretation of statistics in other courses, in the media and in life in general and comment critically on the appropriateness of this use of statistics.
University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Attribute 1: Deep discipline knowledge and intellectual breadth
Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.
1,2,4 Attribute 2: Creative and critical thinking, and problem solving
Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.
1,2,3,4 Attribute 3: Teamwork and communication skills
Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.
2,4 Attribute 4: Professionalism and leadership readiness
Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.
1,2,3,4 Attribute 5: Intercultural and ethical competency
Graduates are responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.
2,3,4 Attribute 7: Digital capabilities
Graduates are well prepared for living, learning and working in a digital society.
1,2,3,4 Attribute 8: Self-awareness and emotional intelligence
Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.
2,4 -
Learning Resources
Required Resources
Text book
Selvanathan S, Selvanathan S and Keller G, Business Statistics: Australia New Zealand Edition 8
ISBN 9780170439527
Calculator
Students will need a calculator; a basic one that can take squares, square roots etc is sufficient.
Excel
Students will be required to perform basic data analysis using relevant software, such as Microsoft Excel.Recommended Resources
Course Materials
Lecture slides, weekly content modules, tutorial questions and other information will be available for students on MyUni and can be downloaded or printed from there. Lectures will be recorded and posted afterwards.
Dictionaries
Students are required to understand specific language, so may find the use of dictionaries during the semester useful. However, they will not be allowed in the exam.Online Learning
Extensive use is made of MyUni, so please check the announcements regularly. Lecture notes, tutorial questions, and other relevant material will be made available on MyUni.
There are discussion boards on MyUni. This is the preferred way for students to ask questions so that all students have the same information and any of the staff can reply, allowing for quicker response time. -
Learning & Teaching Activities
Learning & Teaching Modes
This course uses lectures plus tutorials. The lectures provide an overview of the course content but students must expect that they
will need to study the textbook and/or the MyUni course material in order to understand the work.
The tutorials may incorporate team based learning, discussions, problem solving activities, individual and group work, student questions and student participation. These tutorials provide the opportunity for students to practice; they are vital for success in this course. Before
the tutorials, students are expected to have attended or watched and understood the lectures and to have read the relevant chapter(s) from the textbook or online material.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
The workload for this course should consist of:
Attend Lectures 2 Hours per week Attend Tutorials 1 Hour per week Study Textbook and Lecture Material 4 Hours per week Prepare Quizzes and Assignment Answers 4 Hours per week Learning Activities Summary
Teaching & Learning Activities Related Learning Outcomes Lectures (2 hrs) 1 - 4 Tutorials/ practicals (1 x 1 hr) 1 - 4
The topics to be covered (subject to changes) are:
MODULE 1 Introduction to Statistics & Analytics
What is Statistics?
Types of Data, Data Colleciton and Sampling
MODULE 2 Analysing Data
Graphical Descriptive Techniques - Nominal Data
Graphical Descriptive Techniques - Numerical Data
Measures of Central Locations
Measures of Variability
Measures of Relative Standings
MODULE 3 Probability & Chance
Probability
Random Variables and Discrete Probability Distributions
Random Variables and Continuous Probability Distributions
MODULE 4 Estimation & Hypothesis Testing
Statistical Inference and Sampling Distribution
Estimation - Single Population
Hypothesis Testing
Estimation - Two Populations
MODULE 5 Correlation and Regression
Covariance and Correlation
Linear Regression Model
Specific Course Requirements
None -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment Task Due Date/ Week Weight Length(Time) Learning Outcomes Engagement Activities* Weekly 20% varying 1 - 4 Assignments TBA 30% varying 1 - 4 Final Examination Exam Period 50% 2 hours 1 - 4 Total 100% Assessment Related Requirements
There are NO hurdle requirements
Students pass the course if they achieve an overall score of 50Assessment Detail
Engagement Activities consist of weekly quizzes, and active participation in tutorials.Submission
All activities to be submitted online through MyUni, with the exception of tutorial participation.Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
To be anounced on MyUni. -
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
The revisions to this course, based on student feedback, include a clearer structure of topics, more opportunities to practice questions, a reduction in expenses for online materials and a change in weighting towards continuous assessment. -
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.