PURE MTH 7023 - Pure Mathematics Topic D
North Terrace Campus - Semester 2 - 2018
-
General Course Information
Course Details
Course Code PURE MTH 7023 Course Pure Mathematics Topic D Coordinating Unit Mathematical Sciences Term Semester 2 Level Postgraduate Coursework Location/s North Terrace Campus Units 3 Available for Study Abroad and Exchange Y Assessment ongoing assessment 30%, exam 70% Course Staff
Course Coordinator: Professor Michael Eastwood
Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
In 2018, the topic of this course is Symmetry in Differential Geometry.
Description: Many familiar manifolds are "homogeneous," they look the same at each point even when some extra structure is taken into account. A good example is the sphere which its usual "round" metric. To make this precise, the notion of a "Lie group" is useful: its definition combines the concepts of a group and a smooth manifold. Lie groups themselves are homogeneous and are well captured by an infinitesimal and purely algebraic notion known as a "Lie algebra." So this course is about Lie algebras, Lie groups, and their actions on smooth manifolds. The round sphere is homogeneous under the action of its isometries, which is a Lie group that can be described in terms of matrices, as can its Lie algebra (and this will be true for all the Lie groups in this course).
But there are many more homogeneous structures, even on the sphere. For example, the round sphere is also homogeneous under conformal, i.e. angle-preserving, symmetries or projective, i.e. geodesic-preserving, symmetries. Each of these variations comes with its own type of differential geometry. This course will catalogue the various possibilities and explore the associated differential geometries. Of particular interest, especially in physics, are the differential operators that respect these symmetries. Using methods from the theory of Lie algebras (but always expressed in terms of matrices), some classifications of these operators will be obtained.
Key Phrases: Homogeneous space, Homogeneous bundle, Lie group, Lie algebra, Conformal differential geometry, Contact geometry, Parabolic geometry, Invariant differential operator.
Assumed Knowledge: This course naturally follows on from the Differential Geometry honours course in Semester 1. Basic linear algebra and group theory will be useful.University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Deep discipline knowledge
- informed and infused by cutting edge research, scaffolded throughout their program of studies
- acquired from personal interaction with research active educators, from year 1
- accredited or validated against national or international standards (for relevant programs)
all Critical thinking and problem solving
- steeped in research methods and rigor
- based on empirical evidence and the scientific approach to knowledge development
- demonstrated through appropriate and relevant assessment
all -
Learning Resources
Required Resources
None.Recommended Resources
1. Differential Manifolds (Dover Books on Mathematics) by Antoni A. Kosinski
2. Algebraic Topology: A First Course (Mathematics Lecture Note Series) by Marvin J. Greenberg and John R. Harper
3. Algebraic Topology by Allan Hatcher
https://www.math.cornell.edu/~hatcher/AT/ATpage.html
4. Vector bundles and K-theory by Allan Hatcher
https://www.math.cornell.edu/~hatcher/VBKT/VBpage.html -
Learning & Teaching Activities
Learning & Teaching Modes
The course consists of 30 lectures and 6 assignments. The students are expected to participate actively in the lectures and complete the assignments on time (the assignments will be collected every two weeks). Upon students' need there will be extra tutorials to solve problems and to learn more details or topics beyond the lectures.Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
Activity Quantity Workload Hours Lectures 30 114 Assignments 6 42 Total 156 Learning Activities Summary
Review (2 lectures)
Lectures per topic:
1. 2 lectures
2. 2 lectures
3. 4 lectures
4. 4 lectures
5. 6 lectures
6. 4 lectures
7. 4 lectures
8. 2 lectures
Total = 30 lectures
-
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Component Weighting Learning Outcomes Assignments 30% all Exam 70% all Assessment Related Requirements
An aggregate score of at least 50% is required to pass the course.Assessment Detail
Distributed Due Date Weighting Assignment 1 Week 1 Week 2 5% Assignment 2 Week 3 Week 4 5% Assignment 3 Week 5 Week 6 5% Assignment 4 Week 7 Week 8 5% Assignment 5 Week 9 Week 10 5% Assignment 6 Week 11 Week 12 5% Submission
Assignments will be collected at the beginning of a lecture, every two weeks. Late assignments will not be accepted.Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.