成人大片

STATS 7008 - Statistics Topic D

North Terrace Campus - Semester 2 - 2023

This course is available for students taking a Masters degree in Mathematical Sciences. The course will cover an advanced topic in statistics. For details of the topic offered this year please refer to the Course Outline.

  • General Course Information
    Course Details
    Course Code STATS 7008
    Course Statistics Topic D
    Coordinating Unit Mathematical Sciences
    Term Semester 2
    Level Postgraduate Coursework
    Location/s North Terrace Campus
    Units 3
    Available for Study Abroad and Exchange Y
    Assessment Ongoing assessment, exam
    Course Staff

    Course Coordinator: David Shorten

    Course Timetable

    The full timetable of all activities for this course can be accessed from .

  • Learning Outcomes
    Course Learning Outcomes
    In 2021 STATS 7008 will be offered online through the AMSI ACE Network as the course 

                                                                      Categorical Data Analysis

    A link to the subject guide can be found here: Students will need to enrol in the course via the following link:  in addition to enrolling in the course through MyAdelaide.  A quiz is available to check your background knowledge here: 

    Note that the course will start on July 19 and end on October 29

    The lecturer for the course will be Professor Eric Beh. Lectures will be held via Zoom. 

    The following is a summary of the course from the above subject guide: 

    Categorical data abounds in all disciplines as researchers and analysts search for
    ways of analysing data collected from surveys or questionnaires. Undergraduate
    courses only provide a cursory glance at how categorical data can be analysed. In
    this course we will examine some of the core contributions to categorical data
    analysis with a focus on measures of association, categorical data visualisation and
    modelling categorical data.

    The course will include the following topics
    • Visualisation of categorical data
    • History and development of contingency tables
    • Pearson’s chi-squared statistic and related measures
    • Features, and variations of the odds ratio for single and stratified data
    • Reciprocal averaging and singular value decomposition
    • Correspondence analysis
    • Modelling categorical data

    On successful completion of the course, students will be able to: 
    1. Gain a deeper understanding of the analysis of categorical data 
    2. Explore more deeply the issue concerned with Pearson’s chi-squared statistic and related measures of association that reflect symmetric and asymmetric association
    3. Apply new statistical tools to numerically and visually analyse multiple categorical variables
    4. Apply a variety of correspondence analysis techniques
    5. Model categorical data using association models and log-linear models
    6. Apply their skills to real-life data using R
    7. Undertake basic research skills concerned with categorical data analysis





    University Graduate Attributes

    This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:

    University Graduate Attribute Course Learning Outcome(s)

    Attribute 1: Deep discipline knowledge and intellectual breadth

    Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

    all

    Attribute 2: Creative and critical thinking, and problem solving

    Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.

    all

    Attribute 3: Teamwork and communication skills

    Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.

    all

    Attribute 4: Professionalism and leadership readiness

    Graduates engage in professional behaviour and have the potential to be entrepreneurial and take leadership roles in their chosen occupations or careers and communities.

    all

    Attribute 5: Intercultural and ethical competency

    Graduates are responsible and effective global citizens whose personal values and practices are consistent with their roles as responsible members of society.

    all

    Attribute 8: Self-awareness and emotional intelligence

    Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.

    all
  • Learning Resources
    Required Resources
    Students are not required to purchase any reference book for this course. Instead lecture notes will be provided. Published articles in commonly available, high-profile, journals will also be made available to students for additional insight and context of the weekly topics; they will need to access this material through their own library (full bibliographic information of each article will be provided)

    Students will need to have access to R/Rstudio. They can be freely downloaded from the internet.
  • Learning & Teaching Activities
    Learning & Teaching Modes

    No information currently available.

    Workload

    No information currently available.

    Learning Activities Summary
    Week by week topic overview

    Week 1: An overview of categorical data, its history and standard techniques
    Week 2: Analysis of a single categorical variable – goodness-of-fit tests
    Week 3: The contingency table, chi-squared statistic & related measures
    Week 4: Measures of symmetric association for 2x2 contingency tables
    Week 5: Measures of symmetric association for IxJ contingency tables
    Week 6: Measures of asymmetric association for IxJ contingency tables
    Week 7: Scaling categorical data – reciprocal averaging & canonical correlation analysis
    Week 8: Simple correspondence analysis
    Week 9: Non-symmetric correspondence analysis
    Week 10: Multiple correspondence analysis
    Week 11: Models of correlation and association
    Week 12: Log-linear models

  • Assessment

    The University's policy on Assessment for Coursework Programs is based on the following four principles:

    1. Assessment must encourage and reinforce learning.
    2. Assessment must enable robust and fair judgements about student performance.
    3. Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
    4. Assessment must maintain academic standards.

    Assessment Summary
    Assessment Percent of final mark
    Written assignments (3) 45
    Final exam 55

    The due dates for the assignments are as follows: 

    Assignment 1: due August 20 
    Assignment 2: due September 17 
    Assignment 3: due October 29 


    Assessment Related Requirements
    A final aggregate score of at least 50% is required to pass the course.
    Assessment Detail

    No information currently available.

    Submission
    All written assignments are to be submitted to the lecturer with a signed cover sheet attached. There will be a maximum two week turn-around time on assignments for feedback to students.

    Late assignments will not be accepted, but students may be excused from an assignment for medical or compassionate reasons. In such cases, documentation is required and the lecturer must be notified as soon as possible before the fact.
    Course Grading

    Grades for your performance in this course will be awarded in accordance with the following scheme:

    M10 (Coursework Mark Scheme)
    Grade Mark Description
    FNS   Fail No Submission
    F 1-49 Fail
    P 50-64 Pass
    C 65-74 Credit
    D 75-84 Distinction
    HD 85-100 High Distinction
    CN   Continuing
    NFE   No Formal Examination
    RP   Result Pending

    Further details of the grades/results can be obtained from Examinations.

    Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.

    Final results for this course will be made available through .

  • Student Feedback

    The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.

    SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.

  • Student Support
  • Policies & Guidelines
  • Fraud Awareness

    Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.

The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.