PHYSICS 1200ND - Physics IB
North Terrace Campus - Semester 2 - 2024
-
General Course Information
Course Details
Course Code PHYSICS 1200ND Course Physics IB Coordinating Unit Physics Term Semester 2 Level Undergraduate Location/s North Terrace Campus Units 3 Contact Up to 7 hours per week Available for Study Abroad and Exchange N Prerequisites PHYSICS 1100 - other students may apply to Head of Physics for exemption Corequisites MATHS 1012 - students may be permitted to enrol in Physics IB concurrently with MATHS 1011 on application to Head of Discipline Incompatible PHYSICS 1201 Assumed Knowledge MATHS 1011 or MATHS 1013 Assessment Written exam, workshop preparation, practical work & In-Semester tests Course Staff
Course Coordinator: Associate Professor Andrew MacKinnon
Course Timetable
The full timetable of all activities for this course can be accessed from .
-
Learning Outcomes
Course Learning Outcomes
1 demonstrate a knowledge of the physical principles that describe mechanics of rigid bodies, waves, optics, relativity and quantum physics 2 apply physical principals to familiar and unfamiliar situations in the world we live in 3 use the methods of algebra and calculus to make quantitative and qualitative predictions about the behaviour of physical systems while associating the correct unit with every physical quantity they use; 4 assess the reasonableness of a solution to a problem in qualitative terms 5 make decisions about the measurements needed to achieve an experimental objective 6 make appropriate use of standard measurement techniques and accurately record observations while identifying random and systematic uncertainties in experiments; 7 analyse measurements to determine quantitative results and their uncertainties and draw non trivial conclusions from experimental results; 8 use a variety of sources to locate and synthesise relevant information 9 work cooperatively in a team to complete a task in a limited time 10 confidently communicate results about the physical world both orally and in writing. University Graduate Attributes
This course will provide students with an opportunity to develop the Graduate Attribute(s) specified below:
University Graduate Attribute Course Learning Outcome(s) Attribute 1: Deep discipline knowledge and intellectual breadth
Graduates have comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.
1-8 Attribute 2: Creative and critical thinking, and problem solving
Graduates are effective problems-solvers, able to apply critical, creative and evidence-based thinking to conceive innovative responses to future challenges.
2-8, 10 Attribute 3: Teamwork and communication skills
Graduates convey ideas and information effectively to a range of audiences for a variety of purposes and contribute in a positive and collaborative manner to achieving common goals.
9-10 Attribute 8: Self-awareness and emotional intelligence
Graduates are self-aware and reflective; they are flexible and resilient and have the capacity to accept and give constructive feedback; they act with integrity and take responsibility for their actions.
9-10 -
Learning Resources
Required Resources
Ling, S., Sanny, J. Moebs, W. (2016) University Physics (OpenStax College)
Volume 1:
Volume 2:
Volume 3:Recommended Resources
Kirkup, L Experimental Methods for Science and Engineering Students (2nd Edition) (Wiley) is recommended for the practical work.
Reference books include:
- Giancoli, D. C. Physics for Scientists and Engineers with Modern Physics, Pearson New International Edition, 4th edition (Pearson Prentice Hall).
- Halliday, D, Resnick, R and Walker, J Fundamentals of Physics (11th Australian & New Zealand Edition)
- Tipler, P Physics for Scientists and Engineers (6th Edition)
- Ohanian, Physics: readable and has “interludes” or “essays” reflecting interests often expressed by students
- Marion and Hornyak, Physics for Science and Engineering: is more mathematical than required for our courses
- Serway, Physics for Scientists and Engineers with Modern Physics
Online Learning
MyUni: Teaching materials and course documentation will be posted on the MyUni website ().
-
Learning & Teaching Activities
Learning & Teaching Modes
This course will be delivered by the following means:
- 3 lectures of 1 hour per week
- 1 workshop of 1 hour per week
- 1 practical of 3 hours per fortnight
Workload
The information below is provided as a guide to assist students in engaging appropriately with the course requirements.
A student enrolled in a 3 unit course, such as this, should expect to spend, on average 12 hours per week on the studies required. This includes both the formal contact time required to the course (e.g., lectures and practicals), as well as non-contact time (e.g., reading and revision).
Learning Activities Summary
The course content will include the following:
Coursework Content
Rigid Body Mechanics (34%)
- Systems of particles: centre of mass (CM), combining sub-systems, continuous distributions of matter (calculus); inertial frames and Newton's 1st Law (revised), 3rd Law (revised), motion of CM and Newton's 2nd Law for system, momentum conservation, CM frame.
- Rotation: angular displacement, vector angular velocity and acceleration, constant angular acceleration; torque, rotational inertia, rotational 2nd law (fixed axis); calculating moments of inertia (point masses and continuous distributions, e.g. uniform disc); parallel- and perpendicular-axis theorems.
- Angular Momentum: L = r x p and rotational 2nd Law for single particle and for system of particles; extension to CM frame with fixed-direction axis (not derived); L for rigid body, component Iw along (fixed) axis, balanced wheels; conservation of L, collapsing star (pulsar), Kepler area law, gyroscope; precession; rotational K.E., relation to work done by net torque, rolling bodies.
- Equilibrium: Proof CM = centre of gravity (uniform field), free-body diagrams; problem-solving strategies, e.g. suspended roof/awning, box on rough floor; stability.
- Oscillations: Springs, natural length, mass hung from spring, 2nd-order d.e., general solution via work-energy method; SHM, amplitude, phase, angular frequency, phase constant, initial conditions; relation to motion on circle; SHM K.E. and P.E.; pendula - simple, physical, and torsional.
Waves (20%)
- Types of waves
- Propagation of a pulsed wave
- Periodic wave equation
- Principle of Superposition
- Interference
- Phasors
- Fourier analysis
- Transverse wave on a stretched string
- Sound waves
- Reflection and transmission at boundaries
- Standing waves and resonance
Optics (20%)
- Electromagnetic spectrum
- Wave model and polarization
- Coherence
- Transmission of light and reflection at boundaries
- Huygens’ Principle
- Fermat’s Principle and its application to reflection and refraction
- Fresnel number and the conditions required for geometrical and physical optics.
- Imaging – general properties
- Refraction at spherical surfaces and thin lenses
- Imaging using thin lenses with application to magnifying glass
- Two-slit interference
- Thin film interference
- Michelson interferometry
- Diffraction
- Fresnel and Fraunhofer diffraction pattern of a single slit
- Effect of diffraction on an image and the Rayleigh criterion.
Relativity and Quantum Physics (26%)
- Relativistic Kinematics: Speed of light, Einstein’s' Postulates, simultaneity, relativity of simultaneity, lengths perpendicular to relative motion, time dilation, proper time, twin paradox, length contraction, Lorentz transformation, addition of velocities.
- Relativistic Dynamics: Relativistic momentum and its conservation; rest energy, K.E., and total energy; energy conservation.
- Electromagnetic Radiation: Bragg scattering of X-rays, Planck's hypothesis for cavity radiators, photon energy and momentum, Compton scattering, Compton shift, pair creation.
- Matter Waves: de Broglie hypotheses for momentum and energy, electron diffraction, electron microscope, Heisenberg uncertainty principles.
Practical Work Content
Experiments, carried out in groups of three students, selected from:
- Conservation of Momentum
- Thin Lenses
- Potentiometer
- Capacitors in AC Circuits
- Magnetic Fields
- Speed of Sound
- Wheatstone Bridge
- Telescope
- Rotation
Specific Course Requirements
An A4 lined book is required for the practicals. A 64 page book should be adequate. -
Assessment
The University's policy on Assessment for Coursework Programs is based on the following four principles:
- Assessment must encourage and reinforce learning.
- Assessment must enable robust and fair judgements about student performance.
- Assessment practices must be fair and equitable to students and give them the opportunity to demonstrate what they have learned.
- Assessment must maintain academic standards.
Assessment Summary
Assessment task Type of assessment Percentage of total assessment for grading purposes Hurdle (Yes/No) Outcomes being assessed Workshop preparation and participation Formative & Summative 10% No 1 – 4, 8 – 10 Practical work Formative & Summative 20% Yes
(attend all 5 practical sessions)1 - 10 In – Semester Tests Formative & Summative 10% No 1-4, 10 Written Examination Summative 60% No 1 – 4, 10 Assessment Related Requirements
The learning outcomes for this course are substantially dependent on laboratory experience and practice. Therefore attendance at all 5 practical sessions is compulsory.
Assessment Detail
Workshop preparation and participation (10% of the total course grade)
Workshops are held weekly, starting in the second week.
50% of the grade for the Workshop is based on the student’s preparation and participation during the workshop.
50% of the grade for the Workshop is based on a weekly Post-Workshop Quiz which is due before Friday 5pm.Practical work (20% of the total course grade)
There are five practical sessions which are all compulsory. For each practical, the student must obtain a Satisfactory result in the preparatory work, attend the practical session and submit the logbook for assessment. During the practical sessions, students work in groups of 2 or 3. The students in each group will select one of their completed experiments and cooperate to prepare a scientific poster which is presented in the final practical session. This poster will count for 25% of the practical assessment component.
In – Semester Tests (10% of the total course grade)
Up to 4 tests will occur throughout the semester. The test are online with a submission window of 8 hours, each test is written such that it can be completed in approximately 20 minutes.Examination (60% of the total course grade)
The final examination will be based primarily on lecture/workshop material.Submission
Submission of Assigned Work (including Workshop questions attempts, Practical log book and In-semester Tests)
By submitting an assignment in-person or via MyUni students are agreeing to the following statement:
I declare that all material in this assessment is my own work, except where there is clear acknowledgement and reference to the work of others. I have read the 成人大片's Academic Honesty Policy: /policies/230/
I give permission for any assessed assignments to be reproduced and submitted to other academic staff for the purposes of assessment and to be copied, submitted and retained in a form suitable for electronic checking of plagiarism.
Extensions for Assessment Tasks
Extensions of deadlines for assessment tasks may be allowed for reasonable causes. Such situations would include compassionate and medical grounds of the severity that would justify the awarding of a supplementary examination. Evidence for the grounds must be provided when an extension is requested. Students are required to apply for an extension to the Course Coordinator before the assessment task is due. Extensions will not be provided on the grounds of poor prioritising of time.
Late submission of assessments
If an extension is not applied for, or not granted then a penalty for late submission will apply. A penalty of 10% of the value of the assignment for each calendar day that the assignment is late (i.e. weekends count as 2 days), up to a maximum of 50% of the available marks will be applied. This means that an assignment that is 5 days late or more without an approved extension can only receive a maximum of 50% of the marks available for that assignment.
NOTE: Late submissions of In-semester Tests is not possible, Workshop questions attempts can not be submitted after Friday 5pm of the week of the workshop.Course Grading
Grades for your performance in this course will be awarded in accordance with the following scheme:
M10 (Coursework Mark Scheme) Grade Mark Description FNS Fail No Submission F 1-49 Fail P 50-64 Pass C 65-74 Credit D 75-84 Distinction HD 85-100 High Distinction CN Continuing NFE No Formal Examination RP Result Pending Further details of the grades/results can be obtained from Examinations.
Grade Descriptors are available which provide a general guide to the standard of work that is expected at each grade level. More information at Assessment for Coursework Programs.
Final results for this course will be made available through .
-
Student Feedback
The University places a high priority on approaches to learning and teaching that enhance the student experience. Feedback is sought from students in a variety of ways including on-going engagement with staff, the use of online discussion boards and the use of Student Experience of Learning and Teaching (SELT) surveys as well as GOS surveys and Program reviews.
SELTs are an important source of information to inform individual teaching practice, decisions about teaching duties, and course and program curriculum design. They enable the University to assess how effectively its learning environments and teaching practices facilitate student engagement and learning outcomes. Under the current SELT Policy (http://www.adelaide.edu.au/policies/101/) course SELTs are mandated and must be conducted at the conclusion of each term/semester/trimester for every course offering. Feedback on issues raised through course SELT surveys is made available to enrolled students through various resources (e.g. MyUni). In addition aggregated course SELT data is available.
-
Student Support
- Academic Integrity for Students
- Academic Support with Maths
- Academic Support with writing and study skills
- Careers Services
- Library Services for Students
- LinkedIn Learning
- Student Life Counselling Support - Personal counselling for issues affecting study
- Students with a Disability - Alternative academic arrangements
-
Policies & Guidelines
This section contains links to relevant assessment-related policies and guidelines - all university policies.
- Academic Credit Arrangements Policy
- Academic Integrity Policy
- Academic Progress by Coursework Students Policy
- Assessment for Coursework Programs Policy
- Copyright Compliance Policy
- Coursework Academic Programs Policy
- Intellectual Property Policy
- IT Acceptable Use and Security Policy
- Modified Arrangements for Coursework Assessment Policy
- Reasonable Adjustments to Learning, Teaching & Assessment for Students with a Disability Policy
- Student Experience of Learning and Teaching Policy
- Student Grievance Resolution Process
-
Fraud Awareness
Students are reminded that in order to maintain the academic integrity of all programs and courses, the university has a zero-tolerance approach to students offering money or significant value goods or services to any staff member who is involved in their teaching or assessment. Students offering lecturers or tutors or professional staff anything more than a small token of appreciation is totally unacceptable, in any circumstances. Staff members are obliged to report all such incidents to their supervisor/manager, who will refer them for action under the university's student鈥檚 disciplinary procedures.
The 成人大片 is committed to regular reviews of the courses and programs it offers to students. The 成人大片 therefore reserves the right to discontinue or vary programs and courses without notice. Please read the important information contained in the disclaimer.